Papers

Publications

Dissertation

Papers

  1. Learning in Budgeted Auctions with Spacing Objectives.
    Giannis Fikioris, Robert Kleinberg, Yoav Kolumbus, Raunak Kumar, Yishay Mansour, and Éva Tardos.
    In Submission, 2024.
    [arXiv]

  2. Online Convex Optimization with Unbounded Memory.
    Raunak Kumar, Sarah Dean, and Robert Kleinberg.
    NeurIPS, 2023.
    [proceedings] [arXiv] [code] [poster]

  3. Non-monotonic Resource Utilization in the Bandits with Knapsacks Problem.
    Raunak Kumar and Robert Kleinberg.
    NeurIPS, 2022.
    [proceedings] [arXiv] [code] [poster]

  4. Homeomorphic-Invariance of EM: Non-Asymptotic Convergence in KL Divergence for Exponential Families via Mirror Descent.
    Frederik Kunstner, Raunak Kumar, and Mark Schmidt.
    AISTATS, 2021. (Best Paper Award)
    [proceedings] [arXiv]

  5. Retrieving Top Weighted Triangles in Graphs.
    Raunak Kumar*, Paul Liu*, Moses Charikar, and Austin R. Benson.
    WSDM, 2020.
    [proceedings] [arXiv] [code]

  6. Convergence Rate of Expectation-Maximization.
    Raunak Kumar and Mark Schmidt.
    NeurIPS Workshop on Optimization for Machine Learning (OPT), 2017.
    [pdf]