Online Convex Optimization with Unbounded Memory

Raunak Kumar (Cornell), Sarah Dean (Cornell), Robert Kleinberg (Cornell)

TL;DR

- **Generalization of OCO** capturing complete dependence of present losses on the **entire history of decisions**.
- Matching upper and lower regret bounds, including first non-trivial lower bound for OCO with finite memory [1].
- Applications to online performative prediction and online linear control
 [2] improving existing regret bounds by a factor of dimension.

Framework

Goal: Minimize regret, $R_T = \sum_{t=1}^T f_t(h_t) - \min_{x \in \mathcal{X}} \sum_{t=1}^T f_t \left(\sum_{k=0}^{t-1} A^k B x \right)$. **Definition (***p***-effective memory capacity)**: $H_p = \left(\sum_{k=0}^{\infty} k^p ||A^k||^p \right)^{1/p}$ bounds distance b/w histories generated by (y_k) and (\tilde{y}_k) , where $||y_k - \tilde{y}_k|| \le k$.

Examples

Assumptions

- 1. Learner knows A and B, observes f_t at the end of round t.
- 2. Norm of *B* is at most 1, i.e., $||B|| \leq 1$.
- 3. Functions f_t are convex and *L*-Lipschitz continuous.
- 4. The 1-effective memory capacity is finite. ($\Rightarrow H_p < \infty$ for all $p \ge 1$.)

Regret Bounds

Theorem (upper bound): We design an algorithm with regret $O(\sqrt{T}\sqrt{H_p}\sqrt{L\tilde{L}})$. **Theorem (lower bound)**: We construct instances with regret $\Omega(\sqrt{T}\sqrt{H_p}\sqrt{L\tilde{L}})$.

Specialization finite memory: We improve the upper bound by a factor of $m^{1/4}$ to $O(m\sqrt{T})$ and provide **first non-trivial, matching lower bound** of $\Omega(m\sqrt{T})$.

By assumption 3, convex and \tilde{L} -Lipschitz for $\tilde{L} \leq L \sum_{k=0}^{\infty} ||A^k||$.

Algorithm: Follow-the-regularized-leader (FTRL) on $f_t(x) = f_t(\sum_{k=0}^{t-1} A^k B x)$. With step-size η and strongly-convex regularizer $R: \mathcal{X} \to \mathbb{R}$, choose

$$x_t \in \operatorname{argmin}_{x \in \mathcal{X}} \sum_{s=1}^{t-1} \tilde{f}_t(x) + \frac{R(x)}{\eta}$$

See paper for efficient implementation and version with low switches.

Analysis Sketch: $R_T = \sum_{t=1}^T f_t(h_t) - \tilde{f}_t(x_t) - \min_{x \in \mathcal{X}} \sum_{t=1}^T \tilde{f}_t(x_t) - \tilde{f}_t(x).$ (i) FTRL movement cost (ii) FTRL regret

Key Innovation: Bound FTRL movement cost with weighted norms, allowing us to derive non-trivial regret bounds for unbounded-length histories.

Lower Bound: Consider OCO with m-finite memory.

- Let $\mathcal{X} = [-1,1]$ and $\mathcal{H} = \mathcal{X}^m$.
- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_{\frac{T}{2}}$ be equal to +1 or -1 with probability $\frac{1}{2}$ each.

• Set
$$f_t(h_t) = \epsilon_{\lfloor \frac{t}{m} \rfloor} m^{-1/2} (x_{t-m+1} + \dots + x_m \lfloor \frac{t}{m} \rfloor + 1).$$

- Expected loss of any algorithm is 0.
- Expected loss of the optimal decision is $-\Omega(m\sqrt{T})$.

See paper for a similar construction for ho-discounted infinite memory.

Application to Online Linear Control

Consider online linear control with adversarial disturbances [2].

Goal: Minimize regret $\sum_{t=1}^{T} c_t(s_t, u_t) - \min_{\pi \in \Pi} \sum_{t=1}^{T} c_t(s_t^{\pi}, u_t^{\pi})$.

Benchmark policy class: linear controllers $u_t = K s_t$, where K is (κ, ρ) -stable, i.e., $||F - GK||^2 \le \kappa^2 \rho$ with $\rho < 1$.

Direct parameterization with a linear controller leads to non-convexity.

Convex reparameterization: Disturbance-action controller $(K, M_t = (M_t^{[s]}))$ $u_t = -Ks_t + \sum_{s=1}^{t+1} M_t^{[s]} w_{t-s}.$ *Fixed* matrix. (Parameters) A sequence of matrices.

State is a *linear* function of past parameters $(M_1, M_2, ...)$.

Formulation as OCO with Unbounded Memory:

- 1. Decisions are disturbance-action controllers.
- 2. History is a *transformed* sequence of past decisions.
- 3. Linear operators *A* and *B* defined by dynamics.

4. Loss functions f_t parameterized by past disturbances and cost.

Key Innovation: Weighted norms on the history and decision spaces. This captures the dimension of infinite-dimensional spaces and improves the regret bound in existing works [2] by $O(d (\log T)^{3.5} \kappa^5 (1 - \rho)^{-1})$.

References

- [1] Anava et al. (2015). "Online Learning for Adversaries with Memory: Price of Past Mistakes." In: NeurIPS.
- [2] Agarwal et al. (2019). "Online Control with Adversarial Disturbances." In: ICML.
- [3] Anderson et al. (2019). "System Level Synthesis." In: Annual Reviews in Control.
- [4] Youla et al. (1976). "Modern Wiener-Hopf Design of Optimal Controllers---Par II: The Multivariable Case." In: IEEE Transactions on Automatic Control.

