TL;DR

Generalization of OCO capturing complete dependence of present losses

on the entire history of decisions.

Matching upper and lower regret bounds, including first non-trivial lower

bound for OCO with finite memory [1].

Applications to online performative prediction and online linear control

[2] improving existing regret bounds by a factor of dimension.
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é) History update

Loss function
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Goal: Minimize regret, Ry = Y1 _, f;(h) — min Y f: (Db AFB x).
X

Definition (p-effective memory capacity): H,, = (Z,";O kp||Ak||p)1/p bounds

distance b/w histories generated by (y;) and (¥;), where ||y, — Vx| < k.

Examples

Finite memory
of size 1, i.e.,
OCO.

Finite memory
of size m.

p-discounted
infinite memory.
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Assumptions

N
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Learner knows A and B, observes f; at the end of round t.

Norm of B isatmost 1, i.e., ||B|| <1.
Functions f; are convex and L-Lipschitz continuous.

The 1-effective memory capacity is finite. (= H, < o forallp = 1.)

Regret Bounds

Theorem (upper bound): We design an algorithm with regret 0 (VT [Hp LL).

Theorem (lower bound): We construct instances with regret Q(+/T, [H, LL).

Specialization finite memory: We improve the upper bound by a factor of

m/* to 0(mV/T) and provide first non-trivial, matching lower bound of

Q(mVT).

By assumption 3, convex and L-
LipschitzforL <L Y3, ||A¥]].

I

Algorithm: Follow-the-regularized-leader (FTRL) on f,(x) = f,(X42} A*B x).
With step-size n and strongly-convex regularizer R: X — R, choose

t—1
X € argmin,.cy

B fe(x) + R(x)/r]-

See paper for efficient implementation and version with low switches.

Analysis Sketch: Ry = ¥i_; fi (he) — fi(x) —min ¥, fi () — fe ().
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(i) FTRL movement cost (ii) FTRL regret

Key Innovation: Bound FTRL movement cost with weighted norms, allowing
us to derive non-trivial regret bounds for unbounded-length histories.

Lower Bound: Consider OCO with m-finite memory.

Let X =[—-1,1]and H = X™.

Let ey, €,, ..., €T be equal to +1 or —1 with probability % each.

m
. _ ~1/2
Set f;(hy) = €Ly m (Xe—me1 T+ x lnillﬂ)-
m=3,L=1 Ii Resample every m rounds.
€1 €2 €3
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X1 X9 X3 X4 X5 Xe X7 Xg Xg

e £ (hy) =€, 37 Y2 (x, 4+ x5 + x4)
s - (hs) = €, 37 Y2 (x5 + xy)
e f(he) =€, 3727 (x,)

* Expected loss of any algorithm is O.
 Expected loss of the optimal decision is —Q(m+T).

See paper for a similar construction for p-discounted infinite memory.

Application to Online Linear Control

Consider online linear control with adversarial disturbances [2].

Control policy ¢
€ Il and control

input u,|= nt(a.

Time
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é} State update

Disturbed state

St+1 = Zg41 + Wi

Costc; : S XU - R.

Zt+1 — FSt + Gut.

Goal: Minimize regret Y.1_; ¢ (¢, up) — min (s, ul).
T

Benchmark policy class: linear controllers u; = K s;, where K is (k, p)-
stable, i.e., ||[F — GK||* < k?p withp < 1.
Direct parameterization with a linear controller leads to non-convexity.

Convex reparameterization: Disturbance-action controller (K, M; = (MLISI))

Fixed matrix.

uy = —Kisg + Xeli M
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(Parameters) A sequence of matrices.

State is a linear function of past parameters (M, M,, ...).

Formulation as OCO with Unbounded Memory:

1. Decisions are disturbance-action controllers.

2. Historyis a transformed sequence of past decisions.

3. Linearoperators A and B defined by dynamics.

B

xe = (M¢)

A 4

(M,,0, ...

)

:ht

he—qy = (My—q, GM;— FGM,_3,F?GM;_,, ...

)

— = F — GK

(0,GM,_1,FGM_,, F?°GM,_5, ...)
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4. Loss functions f; parameterized by past disturbances and cost.

Key Innovation: Weighted norms on the history and decision spaces. This

captures the dimension of infinite-dimensional spaces and improves the
regret bound in existing works [2] by O(d (log T)3°k>(1 — p)™1).
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