
Theorem (upper bound): We design an algorithm with regret 𝑂( 𝑇 𝐻! 𝐿&𝐿).

Theorem (lower bound): We construct instances with regret Ω( 𝑇 𝐻! 𝐿&𝐿).

Specialization finite memory: We improve the upper bound by a factor of 
𝑚"/$ to 𝑂(𝑚 𝑇) and provide first non-trivial, matching lower bound of 
Ω(𝑚 𝑇).

Algorithm: Follow-the-regularized-leader (FTRL) on *𝑓%(𝑥) = 𝑓% ∑&'(%)" 𝐴&𝐵 𝑥 . 
With step-size 𝜂 and strongly-convex regularizer 𝑅:𝒳 → ℝ, choose 

𝑥% ∈ argmi𝑛*∈𝒳9
-'"

%)"
*𝑓% 𝑥 + ;𝑅 𝑥

𝜂 .

See paper for efficient implementation and version with low switches.

Analysis Sketch: R. = ∑%'"/ 𝑓% ℎ% − *𝑓% 𝑥% −min
*∈𝒳

∑%'"/ *𝑓% 𝑥% − *𝑓% 𝑥 .

Key Innovation: Bound FTRL movement cost with weighted norms, allowing 
us to derive non-trivial regret bounds for unbounded-length histories.

Lower Bound: Consider OCO with 𝑚-finite memory.

• Let 𝒳 = [−1,1] and ℋ = 𝒳0.

• Let 𝜖", 𝜖1, … , 𝜖!
"

be equal to +1 or −1with probability  "
1

each.

• Set 𝑓% ℎ% = 𝜖⌈ #"⌉
𝑚)"/1 (𝑥%)04" +⋯+ 𝑥0 #

" 4").

Framework

Goal: Minimize regret, R. = ∑%'"/ 𝑓% ℎ% −min
*∈𝒳

∑%'"/ 𝑓% ∑&'(%)" 𝐴&𝐵 𝑥 .

Definition (𝒑-effective memory capacity): 𝐻! = ∑&'(5 𝑘!||𝐴&||! "/!
bounds 

distance b/w histories generated by 𝑦& and O𝑦& , where ||𝑦& − O𝑦&|| ≤ 𝑘.

Examples

Assumptions
1. Learner knows 𝐴 and 𝐵, observes 𝑓% at the end of round 𝑡.
2. Norm of 𝐵 is at most 1, i.e., 𝐵 ≤ 1.
3. Functions 𝑓% are convex and 𝐿-Lipschitz continuous.
4. The 1-effective memory capacity is finite. (⇒ 𝐻! < ∞ for all 𝑝 ≥ 1.)
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Application to Online Linear Control

Goal: Minimize regret ∑%'"/ 𝑐% 𝑠% , 𝑢% −min
6∈7

∑%'"/ 𝑐% 𝑠%6 , 𝑢%6 .

Benchmark policy class: linear controllers 𝑢% = 𝐾 𝑠%, where 𝐾 is (𝜅, 𝜌)-
stable, i.e., | 𝐹 − 𝐺𝐾 |1 ≤ 𝜅1𝜌 with 𝜌 < 1.
Direct parameterization with a linear controller leads to non-convexity.

Convex reparameterization: Disturbance-action controller (𝐾,𝑀% = (𝑀%
[-]))

State is a linear function of past parameters (𝑀", 𝑀1, … ).

Formulation as OCO with Unbounded Memory:
1. Decisions are disturbance-action controllers.
2. History is a transformed sequence of past decisions.
3. Linear operators 𝐴 and 𝐵 defined by dynamics.

4. Loss functions 𝑓% parameterized by past disturbances and cost.

Key Innovation: Weighted norms on the history and decision spaces. This 
captures the dimension of infinite-dimensional spaces and improves the 
regret bound in existing works [2] by 𝑂 𝑑 (log 𝑇 :.<𝜅< 1 − 𝜌 )").

Online Convex Optimization with Unbounded Memory
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𝑚 = 3, 𝐿 = 1 Resample every 𝑚 rounds.

Time

𝜖" 𝜖1 𝜖:

𝑥" 𝑥1 𝑥: 𝑥<𝑥$ 𝑥= 𝑥> 𝑥? 𝑥@
𝑓$ ℎ$ = 𝜖1 3) "/1 (𝑥1 + 𝑥: + 𝑥$)

𝑓< ℎ< = 𝜖1 3) "/1 (𝑥: + 𝑥$)
𝑓= ℎ= = 𝜖1 3) "/1 (𝑥$)

• Expected loss of any algorithm is 0.
• Expected loss of the optimal decision is −Ω(𝑚 𝑇).

See paper for a similar construction for 𝜌-discounted infinite memory.

Regret BoundsTL;DR
• Generalization of OCO capturing complete dependence of present losses 

on the entire history of decisions.
• Matching upper and lower regret bounds, including first non-trivial lower 

bound for OCO with finite memory [1].
• Applications to online performative prediction and online linear control

[2] improving existing regret bounds by a factor of dimension.

By assumption 3, convex and !𝐿-
Lipschitz for !𝐿 ≤ L ∑$%&' ||𝐴$||.

Finite  memory 
of size 1, i.e., 
OCO.

Finite memory 
of size 𝑚.

𝜌-discounted 
infinite memory.

General case.

𝐻( = 1

𝐻( = 𝑚)/(

𝐻( = (1 − 𝜌()+)/(

𝐴 = 0

𝐴 =

𝐴 ∶ ℋ → ℋ

𝑥, 𝑥,+- …

(i) FTRL movement cost (ii) FTRL regret

Decision 
𝑥% ∈ 𝒳.

History update
ℎ% = 𝐴 ℎ%)" + 𝐵 𝑥% ∈ ℋ.

Loss function 
𝑓% ∶ ℋ → ℝ.𝒳 : closed, 

convex subset of 
Hilbert space 
with norm || ⋅ ||𝒳

ℋ : Banach space with 
norm || ⋅ ||ℋ. 𝐴 and 𝐵 are 
linear operators.

𝐵 ∶ 𝒳 → ℋ 𝐴 ∶ ℋ → ℋ

Consider online linear control with adversarial disturbances [2].

State update
𝑧%4" = 𝐹 𝑠% + 𝐺 𝑢%.

Disturbed state
𝑠%4" = 𝑧%4" + 𝑤%.

Cost 𝑐% ∶ 𝒮 × 𝒰 → ℝ.

Control policy 𝜋%
∈ Π and control 
input uA = 𝜋% 𝑠% .

In ℝ0.

𝑢% = −𝐾 𝑠% + ∑-'"%4"𝑀%
[-] 𝑤%)-.

Fixed matrix. (Parameters) A sequence of matrices.

𝐴 =

𝐻( = ∑$%&,+- 𝑘(||𝐴$||(

(0, 𝐺𝑀,+-, !𝐹𝐺𝑀,+(, !𝐹(𝐺𝑀,+), … )

𝑥, = (𝑀,) (𝑀, , 0, … )
𝐴

ℎ,+- = (𝑀,+-, 𝐺𝑀,+(, !𝐹𝐺𝑀,+), !𝐹(𝐺𝑀,+1, … )

𝐵 +
ℎ,

≔ 𝐹 − 𝐺𝐾


