Model

We introduce a natural generalization of the (stochastic) bandits with
knapsacks (BwK) model [1] by allowing non-monotonic resource
utilization. This captures resource renewal in many applications of BwK,
such as dynamic pricing.

There are k arms and m resources each with initial budget B. In each
round t € [T], if the budget of any resource is < 1, the algorithm must
choose arm x° (“null arm”); otherwise, it may choose any arm. It observes
an outcome sampled from the chosen arm’s outcome distribution. The
outcome consists of a reward r, and a drift d,; € [-1,1] for each

resource j. The budget of each resource is incremented by its drift: B, ; =
Bt—l,j + dt,j'

In this poster we focus on the special case of one resource. The paper
deals with the general case of multiple resources.

Assumptions:

1. Null arm has zero reward, non-negative drift, and positive expected drift.
2. All arms have non-zero expected drifts.

3. Solution to the LP relaxation is unique.

Results

1. (R1) If we know the true outcome distributions, we design a policy,
ControlBudget (CB), that has 0(1) instance-dependent regret with
respect to OPT (total expected reward of the optimal solution).

2. (R2) If we don’t know the true outcome distributions, we design a
learning algorithm, Explore ThenControlBudget (ETCB), that has
O (log T) instance-dependent regret with respect to OPT.
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Learning Algorithm Explore ThenControlBudget

Learning algorithm, ETCB, proceeds in two phases: (1) explore in a round-
robin fashion to find arms in the LP solution; (2) play the policy CB.

Policy ControlBudget

In the special case of one resource, the solution to the LP relaxation is one

of three types:

1. One arm with positive drift.
2. Two arms: one negative drift and the null arm.
3. Two arms: one negative drift and one positive drift.

Case 1: Positive drift arm xP.
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Regret Analysis Sketch

Case 1: Regret = expected number of null arm pulls. This is equal to
number of visits to [0, 1) by a positive drift random walk, which is a constant.

Case 2: Similar to case 3.

Case 3: By properties of LPs, the regret is at most the sum of the expected
number of null arm pulls and the expected leftover budget.

Lemma: Expected number of

pulls of the null arm is a constant.

Lemma: Expected leftover budget

IS a constant.
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Budget < 1 if pulling xP decreases budget:
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Actual budgets vs ideal budgets (one resource).
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Last pull of null / positive drift
arm early in the time horizon:

Last pull of null / positive drift
arm late in the time horizon:
budget is small, few rounds left.
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