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Interactions between a learner and an environment arise in a variety of domains,

ranging from online recommendations (e.g., Spotify) to control of physical dy-

namical systems (e.g., temperature regulation in a datacenter). In this disserta-

tion we study such problems through two different perspectives: online decision-

making and network science.

In Part I we study how a learner should make decisions while receiving feed-

back from interactions online. We generalize classic models of online decision-

making with a focus on settings where the learner’s present outcome depends

on all of their past decisions. First, we introduce a natural generalization of the

stochastic bandits with knapsacks problem [Badanidiyuru et al., 2018] that allows

non-monotonic resource utilization. We develop algorithms with constant and

logarithmic regret against a linear programming relaxation of the problem when

the outcome distributions are known and unknown to the decision-maker respec-

tively. Next, we introduce a generalization of the online convex optimization

problem [Zinkevich, 2003] that captures long-term dependence on past decisions.

We prove matching upper and lower bounds on regret, including the first non-

trivial lower bound for online convex optimization with finite memory [Anava

et al., 2015]. We use our framework to derive regret bounds, and to improve and



simplify existing regret bound derivations, for a variety of online learning prob-

lems such as online linear control and online performative prediction.

In Part II we study how a learner can analyze the interactions after they

have occurred. We consider the projection of past interactions onto a weighted

graph and generalize classic network science tools for unweighted graphs to the

weighted case. In particular, we generalize a classic network science tool, trian-

gle (3-clique) counting and enumeration [Avron, 2010, Eden et al., 2017, Kolda

et al., 2013, Berry et al., 2015, Stefani et al., 2017a], to the weighted case. Given

a weighted graph and an integer k, we develop deterministic and randomized

sampling algorithms that retrieve the top-k weighted triangles. These algorithms

perform well across a broad range of large weighted graphs and provide orders

of magnitude speedup over an intelligent brute-force enumeration approach.

Advisors: Robert D. Kleinberg and Sarah Dean.
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CHAPTER 1

OVERVIEW OF THE DISSERTATION

Interactions between a learner and an environment arise in a variety of do-

mains, ranging from online recommendations to control of physical dynamical

systems. For example, consider the following interaction loop in an online rec-

ommendations setting: (i) the audio streaming platform Spotify (learner) recom-

mends content (songs, podcasts, and audiobooks) to its users (environment); (ii)

it receives feedback from the users, e.g., whether they played the recommended

content, how long they played it for, whether they added it to a playlist, etc.; (iii)

the process repeats. For an example in the setting of controlling physical dynami-

cal systems, consider the following interaction loop for temperature regulation in

a data center [Lazic et al., 2018]: (i) the data center controller (learner) chooses ac-

tions (fan speed, valve opening, etc.); (ii) the controller receives feedback from the

data center (environment) in the form of measurements such as temperature and

differential air pressure; (iii) the process repeats. Given the prevalence of digital

systems in our lives, it is not surprising to see such interaction loops arise in nu-

merous other problems, such as dynamic pricing [Besbes and Zeevi, 2009, Babaioff

et al., 2012], pay-per-click ad allocation [Slivkins, 2011, 2014], and variable-speed

wind turbines in wind energy power production [Boukhezzar and Siguerdidjane,

2010].

In this dissertation we study such problems through two different perspec-

tives: online decision-making and network science. In Part I we study how a

1



learner should make decisions while interacting with an environment. We gen-

eralize classic models of online decision-making with a focus on settings where

the learner’s present outcome depends on all of their past decisions. In Part II

we study how a learner can analyze the interactions after they have occurred. We

consider the projection of past interactions onto a weighted graph and generalize

classic network science tools for unweighted graphs to the weighted case.

1.1 Learning with Interactions via Online Decision-making

Online decision-making problems consist of repeated interactions between a

learner and an environment over T rounds. In each round, the learner chooses

a decision, suffers some loss, and observes some feedback from the environment.

Clearly, the learner would like to choose a decision that minimizes the total loss

over T rounds. One of the main challenges of online decision-making is that the

learner does not know the environment ahead of time. So, they must choose de-

cisions online based on the feedback observed so far. The performance of the

learner is measured by regret, which is the difference between (i) the total loss of

the learner; and (ii) the total loss of the best benchmark in hindsight, i.e., the to-

tal loss of the best fixed decision had one known the environment ahead of time.

The goal in online decision-making is to develop algorithms whose regret grows

sublinearly with the time horizon T .

Two of the most well-studied models of online decision-making are stochas-

tic multi-armed bandits and online convex optimization. They both distill dif-
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ferent challenges of online decision-making into a clean abstraction and have a

long history of research [Robbins, 1951, Lai and Robbins, 1985, Littlestone and

Warmuth, 1989, Zinkevich, 2003]. We refer the reader to excellent surveys and

textbooks on these topics [Bubeck and Cesa-Bianchi, 2012, Slivkins, 2019, Latti-

more and Szepesvári, 2020, Hazan, 2022, Orabona, 2019]. Here, we provide a very

high-level overview.

Stochastic multi-armed bandits are the quintessential model of the

exploration-exploitation trade-off. There is a finite set actions, which are com-

monly called arms. Each arm is associated with a fixed but unknown reward

distribution. (In the bandits literature it is customary to use rewards instead of

losses.) In each round, the learner chooses an arm and observes a reward drawn

from the chosen arm’s distribution. The goal is to minimize the difference between

(i) the expected total reward of always choosing the arm with the highest mean;

and (ii) the expected total reward of the algorithm. There are two main challenges.

First, the learner does not know the true distributions. Second, the learner only

observes bandit feedback, i.e., it only observes the reward of the chosen arm in a

round; it does not know what would have happened had it chosen a different

arm. Therefore, the learner faces a dilemma: should it choose an arm that has per-

formed well so far (exploitation) or should it choose a different arm to learn more

about its distribution (exploration)? There is a long line of work establishing tight

bounds on regret and considering many extensions to this basic model. We refer

the reader to the citations above for a comprehensive introduction.
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Online convex optimization (OCO) is another classic model that focuses on a

different challenge of online decision-making: how should a learner choose deci-

sions when the rewards or losses can be arbitrary? The setup of OCO is as follows.

(In the OCO literature it is customary to use losses instead of rewards.) There is

a closed, convex set of actions. In each round, the learner chooses an action and,

simultaneously, an adversary chooses a convex loss function. Then, the learner

observes the loss function and suffers the loss associated with their chosen action.

The goal is to minimize the difference between (i) the total loss of the algorithm;

and (ii) the total loss of the best fixed action had one known the loss functions

ahead of time. Note that in the OCO model, at the end of a round the learner

knows the loss function, i.e., observes full feedback; it knows what would have

happened had it chosen a different action. This is unlike stochastic bandits. How-

ever, the challenge is that the loss functions can be chosen arbitrarily. How does

one use past feedback to choose decisions that have low regret with respect to the

best fixed action that knows the sequence of loss functions in advance? As with

stochastic bandits, there is a long line of work establishing tight bounds on regret

and considering many extensions to this basic model. We refer the reader to the

citations above for a comprehensive introduction.

While these classic models provide a clean abstraction for important chal-

lenges of online decision-making, a major limitation is that they lack “memory”:

the current reward or loss depends only on the current decision. This is not true

in many applications. For example, consider dynamic pricing where a seller has

an inventory of items and wants to choose a sequence of prices to maximize total
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revenue. A typical approach is to model this in the stochastic multi-armed bandit

model, where arms correspond to prices and the reward corresponds to the rev-

enue from a sale (if any). In this formulation the revenue in a round depends only

on the current price. However, the seller may be constrained by a limited inven-

tory of items that can run out well before the end of the time horizon. Therefore,

the revenue in a round depends on the current inventory, which in turn depends

on the history of prices chosen by the seller. For another example, consider on-

line control of a physical dynamical system, such as variable-speed wind turbines

in wind energy electric power production [Boukhezzar and Siguerdidjane, 2010].

The system state is the electrical and mechanical properties of the turbine system;

the control inputs are generator torque and blade pitch angle, and these influence

the turbine speed and the future system state; and the objective is to design a

controller to maximize power generation and minimize system load. A popular

approach is to model this as an OCO problem. However, note that the current

system state depends on the entire history of controls. Therefore, the current loss

depends not only on the current decision but the entire history of decisions. The

OCO framework cannot capture such long-term dependence of the current loss

on the past decisions and neither can existing generalizations that allow the loss

to depend on a constant number of past decisions [Anava et al., 2015]. Although

a series of approximation arguments can be used to apply finite memory gener-

alizations of OCO to the online linear control problem [Agarwal et al., 2019b],

there is no OCO framework that captures the complete long-term dependence of

current losses on past decisions.
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In the rest of this section we provide a high-level overview of our contributions

in Part I of this dissertation, where we augment the aforementioned models of

online decision-making with a notion of memory and present simple algorithms

with strong theoretical guarantees.

Non-monotonic Resource Utilization in the Bandits with Knapsacks Problem.

Bandits with knapsacks (BwK) [Badanidiyuru et al., 2018] is an influential model

of online decision-making under uncertainty that incorporates resource consump-

tion constraints. In each round, the decision-maker observes an outcome consist-

ing of a reward and a vector of nonnegative resource consumptions, and the bud-

get of each resource is decremented by its consumption. While BwK augments

the classic stochastic multi-armed bandit model with a notion of memory through

resource budgets, it has a key limitation: the budget of each resource is always

non-increasing. This monotonicity assumption does not capture applications such

as dynamic pricing where resources can be replenished or consumed in a non-

monotonic manner.

In Chapter 3 we introduce a natural generalization of the stochastic BwK prob-

lem that allows non-monotonic resource utilization. In each round, the decision-

maker observes an outcome consisting of a reward and a vector of resource drifts

that can be positive, negative or zero, and the budget of each resource is incre-

mented by its drift. Our main result is a Markov decision process (MDP) pol-

icy that has constant regret with respect to a linear programming (LP) relaxation
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when the decision-maker knows the true outcome distributions. Instead of merely

sampling from the optimal probability distribution over arms, our policy samples

from a perturbed distribution to ensure that the budget of each resource stays

close to a decreasing sequence of thresholds. The sequence is chosen such that

the expected leftover budget is a constant and proving this is a key step in the

regret analysis. Our work combines aspects of related work on logarithmic regret

for BwK [Flajolet and Jaillet, 2015, Li et al., 2021a]. We build upon this to develop

a learning algorithm that has logarithmic regret with respect to the same LP re-

laxation when the decision-maker does not know the true outcome distributions.

We also present a reduction from BwK to our model that shows our regret bound

matches existing results [Li et al., 2021a].

Online Convex Optimization with Unbounded Memory. Online convex opti-

mization (OCO) is a different influential model of online decision-making. In each

round, the learner chooses a decision in a convex set and an adversary chooses a

convex loss function, and then the learner suffers the loss associated with their

current decision. However, in many applications the learner’s loss depends not

only on the current decision but on the entire history of decisions until that point.

The OCO framework and its existing generalizations do not capture this, and they

can only be applied to many settings of interest after a long series of approxima-

tion arguments. They also leave open the question of whether the dependence on

memory is tight because there are no non-trivial lower bounds.
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In Chapter 4 we introduce a generalization of the OCO framework, “Online

Convex Optimization with Unbounded Memory”, that captures long-term depen-

dence on past decisions. We introduce the notion of p-effective memory capacity,

Hp, that quantifies the maximum influence of past decisions on present losses.

We prove an O(
√

HpT ) upper bound on the policy regret and a matching (worst-

case) lower bound. As a special case, we prove the first non-trivial lower bound

for OCO with finite memory [Anava et al., 2015], which could be of independent

interest, and also improve existing upper bounds. We demonstrate the broad ap-

plicability of our framework by using it to derive regret bounds, and to improve

and simplify existing regret bound derivations, for a variety of online learning

problems including online linear control and an online variant of performative

prediction.

1.2 Analyzing Interactions Offline via Network Science

In addition to learning with interactions online, a learner may also want to analyze

past interactions offline. In many applications these interactions can be projected

onto a weighted graph. For example, consider a user “listening session” on the

music streaming platform Spotify [Kumar et al., 2020]. One simple graph that

can be constructed from this interaction data is a bipartite graph: the nodes are

users and songs, and there is a weighted edge between a user and a song with the

weight equal to the number of times the user has listened to the song. A different
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graph is the following: the nodes are songs, and there is a weighted edge between

two songs with the weight equal to the number of times the two songs have co-

appeared in a listening session. After building such graphs from interaction data,

the learner can get insights into their rich structure by using tools from network

science.

In the rest of this section we provide a high-level overview of our contribu-

tions in Part II of this dissertation, where we generalize classic network tools for

unweighted graphs to the weighted case.

Retrieving Top Weighted Triangles in Graphs. Small subgraph patterns, also

called graphlets or network motifs, have proven fundamental for the understand-

ing of the structure of complex networks [Milo et al., 2002, 2004, Benson et al.,

2016]. One of the simplest non-trivial subgraph patterns is the triangle (3-clique)

and the basic problem of triangle counting and enumeration has been studied

extensively from theoretical and practical perspectives [Avron, 2010, Eden et al.,

2017, Kolda et al., 2013, Berry et al., 2015, Stefani et al., 2017a]. These develop-

ments are often driven by the desire to scale graph counting to large networks,

where performing computations naively is intractable. The focus on triangles is

in part spurred by the widespread use of the pattern in graph mining applica-

tions, including community detection [Berry et al., 2011, Gleich and Seshadhri,

2012, Rohe and Qin, 2013], network comparison [Contractor et al., 2006, Mahade-

van et al., 2007, Pržulj, 2007], representation learning [Henderson et al., 2012, Rossi
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and Ahmed, 2015], and generative modeling [Robins et al., 2007, Robles-Granda

et al., 2016]. Additionally, triangle-based network statistics such as the clustering

coefficient are used extensively in the social sciences [Durak et al., 2012, Lawrence,

2006, Burt, 2007, Welles et al., 2010].

The edge weights present in many real-world networks offer additional insight

into the structure of these networks [Wasserman and Faust, 1994, Jia et al., 2019,

Xu et al., 2014]. In such networks, one goal is to discover the top-weighted trian-

gles, where the weight of a triangle is derived from the weights of its constituent

edges. An application for finding top-weighted triangles appears in prediction

tasks involving higher-order network interactions. The goal of the “higher-order

link prediction” problem is to predict which new groups of nodes will simultane-

ously interact (such as which group of songs will co-appear in a listening session

in the future) [Benson et al., 2018]. However, nearly all of the algorithmic literature

on scalable counting or enumeration of triangles focuses on unweighted graphs.

In Chapter 5 we develop algorithms that enable the fast discovery of triangles

with the largest weight in a weighted graph. Formally, let G = (V, E,w) be a simple,

undirected graph with positive edge weights w. Let the weight of a triangle in G

be the generalized p-mean of its consitutent edge weights. That is, if a triangle

defined by vertices a, b, and c has edge weights wab,wbc, and wac, then the weight

of the triangle is

mp(a, b, c) =
(
1
3

(wp
ab + wp

bc + wp
ac)

) 1
p

.

Given a graph G and a positive integer k, we develop a suite of determinstic and
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randomized sampling algorithms to extract the top-k triangles in G. (We use top-k

to refer to the triangles having the k largest weights.)

Our deterministic algorithms are optimized for extracting the top-k triangles

for small k (typically up to a few tens of thousands). These algorithms take advan-

tage of the inherent heavy-tailed edge weight distribution common in real-world

networks. Our randomized sampling algorithms aim to extract a large number of

heavy triangles (not necessarily the top-k). We show that this family of sampling

algorithms is closely connected to the prior sampling algorithms for counting tri-

angles on unweighted graphs [Seshadhri et al., 2014]. Furthermore, we show that

these sampling algorithms are easily parallelizable.

We find that a carefully tuned parallel implementation of our deterministic

algorithm performs well across a broad range of large weighted graphs, even

outperforming the fast random sampling algorithms that are not guaranteed to

enumerate all of the top-weighted triangles. A parallel implementation of our

algorithm running on a commodity server with 64 cores can find the top 1000

weighted triangles in under 10 seconds on several graphs with hundreds of mil-

lions of weighted edges and in 30 seconds on a graph with nearly two billion

weighted edges. We compare this with the off-the-shelf alternative approach,

which would be an intelligent triangle enumeration algorithm that maintains a

heap of the top-weighted triangles. Our proposed algorithms are orders of mag-

nitude faster than this standard approach.
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CHAPTER 2

PRELIMINARIES FOR ONLINE DECISION-MAKING

2.1 A Framework for Online Decision-making

In this section we introduce a unifying framework for online decision-making that

includes the problems from Chapters 3 and 4 as special cases. First, we present

many formal and abstract definitions. Then, we instantiate the framework for spe-

cific problems to illustrate how to use it concretely. We note that other frameworks

exist in the literature, e.g., Kleinberg [2005], Lattimore and Szepesvári [2020], Fos-

ter et al. [2022], and our presentation is influenced by them. Our goal is to establish

notation and terminology that we will use in the rest of this dissertation.

Throughout Part I, we use T ∈ N to denote the time horizon, i.e., the length of

the interaction between a learner and the environment.

Definition 2.1.1 (Domain). The domain of an online decision-making problem is a

tuple of sets (X,Ψ,L,G), where X denotes the underlying action space, Ψ denotes

the state space,L denotes the space of loss functions fromΨ to ∆(R), andG denotes

the space of dynamics functions from Ψ × X to ∆(Ψ).1

Definition 2.1.2 (Feedback). The feedback space of an online decision-making

problem is a tuple of sets Φ = (Φl,Φg) representing the possible values of the

loss feedback and dynamics feedback in a single round. The feedback model of

1We use ∆(·) to denote the set of probability distributions over a set.
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an online decision-making problem is a tuple of functions ϕ = (ϕl, ϕg) representing

the feedback models for loss and dynamics respectively, where ϕl : L × Ψ → Φl

and ϕg : G × Ψ × X → Φg.

Two common examples of feedback are full feedback and bandit feedback. For

example, consider the feedback for loss functions. (Similar definitions hold for

the dynamics functions.) If, in every round, the learner observes the full function

l, i.e., Φl = L and ϕl(l, ψ) = l, then this is called full feedback. If, in every round, the

learner only observes the value of the loss function evaluated at the current state,

i.e., Φl = R and ϕl(l, ψ) = l(ψ), then this is called bandit feedback.

Definition 2.1.3 (Decision/Policy). A decision or policy π ∈ Π for an online

decision-making problem is a function π : ∪∞t=1Φ
t−1
g → ∆(X) that maps a history

of dynamics feedback to a distribution over actions.

Note that the input to a policy is a variable-length sequence of dynamics feed-

back. We will restrict ourselves to “causal” policies, i.e., in round t the input to a

policy is the dynamics feedback from the first t − 1 rounds. In particular, in round

t the input to a policy only depends on past feedback.

Definition 2.1.4 (Algorithm). An algorithm for an online decision-making prob-

lem is a sequence of functions ALG = (ALGt)T
t=1, where ALGt : (Φl × Φg)t−1 → ∆(Π).

Informally, an algorithm for an online decision-making problem produces a

sequence of policies (or decisions), (π1, . . . , πT ), where πt depends only on the loss
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and dynamics feedback from the first t − 1 rounds. The policy πt produces an

action, denoted by xt, that is a function of the dynamics feedback from the first

t − 1 rounds. One might wonder: why does the algorithm not choose an action

xt directly? This can be recovered as a special case by setting Π = X. That is,

by considering history-independent, constant-action policies where each π ∈ Π

corresponds to a fixed action x ∈ X. However, for some problems, such as bandits

with knapsacks (Chapter 3), online linear control (Chapter 4), etc., it is crucial to

consider general, history-dependent policies.

Definition 2.1.5 (Environment). An environment for an online decision-making

problem is a sequence of functions ENV = (ENVt)T
t=1, where ENVt : Xt−1 → ∆(L×G).

Furthermore,

• An environment is an oblivious adversary if ENVt is a constant function.

That is, (lt, gt) is a sample from an arbitrary distribution over L × G, but it

does not depend on the learner’s actions.

• An environment is stochastic if ENVt = ENV1 for all t ∈ [T ] and ENV1 is a

point mass on L × G. That is, there is (l, g) ∈ L × G such that (lt, gt) = (l, g) for

all t ∈ [T ].

Informally, an environment for an online decision-making problem produces

a sequence of loss and dynamics functions, ((l1, g1), . . . , (lT , gT )), where (lt, gt) de-

pends only on the learner’s actions in the first t − 1 rounds. An environment is

an oblivious adversary if the sequence does not depend on the learner’s actions.
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Note that this is still a non-trivial problem because the adversary can choose an

arbitrary point mass on the space of loss and dynamics functions and this point

mass can differ across rounds. An environment is stochastic if the loss and dy-

namics functions are the same across all rounds.

Definition 2.1.6 (Online Decision-making Problem). An online decision-making

problem is a tuple ODM = (X,Ψ,L,G,Φ, ϕ,Π,ENV).

In summary, an online decision-making problem proceeds as follows. The ini-

tial state ψ0 ∈ Ψ is known to the learner. In each round t ∈ [T ],

1. The algorithm chooses a policy πt ∈ Π, and the environment simultaneously

chooses a loss function lt ∈ L and a dynamics function gt ∈ G.

• The algorithm chooses πt ∼ ALGt((ϕl(li, ψi), ϕg(gi, ψi−1, xi))t−1
i=1).

• The policy chooses xt ∼ πt((ϕg(gi, ψi−1, xi))t−1
i=1).

• The environment chooses (lt, gt) ∼ ENVt((xi)t−1
i=1).

2. The state updates to ψt ∼ gt(ψt−1, xt).

3. The learner suffers loss lALG
t ∼ lt(ψt).

4. The learner observes feedback (ϕl(lt, ψt), ϕg(gt, ψt−1, xt)) ∈ Φl × Φg.

Note that in our framework the loss depends on the state, rather than the action

or the state-action pair. However, this can be encoded by expanding the definition
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of state to include the action. This should become clear from the examples in the

subsection that follows.

The performance of an algorithm for an online decision-making problem is

measured by regret. It is the difference between two quantities: (i) the expected

total loss of the algorithm; and (ii) the expected total loss of a fixed policy.

Definition 2.1.7 (Regret). Let ALG be an algorithm for an online decision-making

problem ODM = (X,Ψ,L,G,Φ, ϕ,Π,ENV). Then, the regret is defined as

RegODM
T (ALG) = E

 T∑
t=1

lALG
t

 − inf
π∗∈Π
E

 T∑
t=1

lπ
∗

t

 ,
where (i) lπ

∗

t ∼ lt(ψπ
∗

t ) and ψπ
∗

t denotes the state in round t as a result of using the

algorithm (π∗, . . . , π∗); and (ii) the expectation is with respect to the randomness in

ALG,ENV, πt, lt, and gt.

2.1.1 Examples

Stochastic multi-armed bandits. The stochastic multi-armed bandits prob-

lem [Robbins, 1951, Lai and Robbins, 1985, Bubeck and Cesa-Bianchi, 2012,

Slivkins, 2019, Lattimore and Szepesvári, 2020] is defined as follows. There is a

finite set of k arms denoted by Xmab. In each round t ∈ [T ], the learner chooses

an arm from Xmab and observes a reward rt ∈ [0, 1]. Each arm has a reward dis-

tribution and the reward in round t, rt, is drawn from the chosen arm’s reward

distribution. The goal of the learner is to minimize the regret, i.e., the difference
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between the total expected reward of the best fixed arm and the total expected

reward of the algorithm. This can be formulated in the online decision-making

framework defined above as follows.

• Actions X = Xmab.

• States Ψ = Xmab.

• Dynamics function gt = g for all rounds, where g(ψt−1, xt) = xt. Here, G

consists of a single function defined by the previous equation.

• Loss function lt = l for all rounds, where l(x) = −r(x) and r(x) is a reward

sampled from the reward distribution of arm x. Here, L is the set of all

mappings from Xmab to ∆([−1, 0]).

• Feedback spaces Φl = [−1, 0] and Φg = Xmab.

• Feedback functions ϕl(l, ψt) = l(ψt) and ϕg(g, ψt−1, xt) = xt.

• Decisions Π are constant functions taking values in the set of point-mass

distributions over Xmab.

• The environment ENV is stochastic.

Online convex optimization. The online convex optimization problem [Little-

stone and Warmuth, 1989, Zinkevich, 2003, Hazan, 2022, Orabona, 2019] is defined

as follows. There is a closed, convex set of actions denoted by Xoco. In each round

t ∈ [T ], the learner chooses an action from Xoco and, simultaneously, an oblivious

adversary chooses a convex loss function ft : Xoco → R. The learner observes the
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loss function and suffers the loss associated with their chosen action. The goal of

the learner is to minimize the regret, i.e., the difference between the total loss of

the algorithm and the total loss of the best fixed action. This can be formulated in

the online decision-making framework defined above as follows.

• Actions X = Xoco.

• States Ψ = Xoco.

• Dynamics function gt = g for all rounds, where g(ψt−1, xt) = xt. Here, G

consists of a single function defined by the previous equation.

• Loss function lt = ft for all rounds. Here, L is the set of all convex functions

from Xoco to R.

• Feedback spaces Φl = L and Φg = Xoco.

• Feedback functions ϕl(lt, ψt) = lt and ϕg(g, ψt−1, xt) = xt.

• Decisions Π are constant functions taking values in the set of point-mass

distributions over Xoco.

• The environment ENV is an oblivious adversary.

Online linear control with adversarial disturbances. Online linear control

(OLC) is the problem of controlling a system with linear dynamics, adversarial

disturbances, and adversarial and convex losses. It combines aspects from control

theory and online learning. We refer the reader to Agarwal et al. [2019b] for more

details. Here, we introduce the basic mathematical setup of the problem.
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Let S ⊆ Rds and U ⊆ Rdu denote the state and control spaces. Let st and ut

denote the state and control at time t with s1 being the initial state. Let Πolc denote

a given class of controllers.2 In each round t ∈ [T ], the learner chooses a controller

πt (which yields a control ut) and, simultaneously, an oblivious adversary chooses

(i) a disturbance wt ∈ R
ds with ∥wt∥2 ≤ W and (ii) a convex loss function ct : S×U →

[0, 1]. The system evolves according to linear dynamics st+1 = Fst +Gut +wt, where

F ∈ Rds×ds and G ∈ Rdu×du are matrices known to the learner. The learner observes

the loss function ct, the new state st+1, and suffers the loss ct(st, ut). The goal of the

learner is to minimize the regret with respect to the given class of controllers Πolc.

This can be formulated in the online decision-making framework defined above

as follows.

• Actions X = U.

• States Ψ = S ×U × S.

• Intial state ψ0 = (s1, 0).

• Dynamics function gt defined as

gt((st−1, ut−1, st), ut) = (st, ut, Fst +Gut + wt).

Here, G is the set of all mappings from (S×U ×S) ×U to S×U ×S that are

defined by the previous equation, and parameterized by F,G and w, where

F,G ∈ Rds×ds are fixed and w ∈ Rds .

2A controller chooses the control as a function of the past states, e.g., ut = Kst for a “linear
controller” K ∈ Rdu×ds .
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• Loss function lt((st, ut, st+1)) = ct(st, ut). Here, L is the set of all convex func-

tions from S ×U × S to [0, 1].

• Feedback spaces Φl = L and Φg = S ×U × S.

• Feedback functions ϕl(lt, (st, ut, st+1)) = lt and ϕg(gt, (st−1, ut−1, st), ut) =

gt((st−1, ut−1, st), ut).

• Decisions Π = Πolc. For concreteness and X = Rdu , if Πolc is the class of linear

controllers, then each policy π ∈ Πolc is parameterized by a matrix Kπ ∈ R
du×ds

and produces π((s j, u j, s j+1)t
j=1) = Kπst.

• The environment ENV is an oblivious adversary.

Instead of solving this problem directly, which leads to nonconvexity, we solve

it by formulating it as an online convex optimization with unbounded memory

problem, which we develop in Chapter 4.

2.2 Standard Analysis of Follow-the-Regularized-Leader

In this section we state and prove some existing results about the follow-the-

regularized-leader (FTRL) algorithm [Shalev-Shwartz and Singer, 2006, Aber-

nethy et al., 2008]. These results are well known in the literature. But we use them

heavily in Chapter 4, so we prove them here for completeness. While we for-

mulated online convex optimization (OCO) in our online decision-making frame-

work in the previous section, here we simplify the notation and setup (e.g., ignore

22



the dynamics because they are trivial for this problem). This is so that we can focus

on the details of the FTRL algorithm and its regret analysis without unnecessary

clutter.

Consider the following setup for an OCO problem. Let T denote the time

horizon. Let the action spaceXoco be a closed, convex subset of a Hilbert space and

ft : Xoco → R be loss functions chosen by an oblivious adversary. The functions ft

are convex and L f -Lipschitz continuous. The game between the learner and the

adversary proceeds as follows. In each round t ∈ [T ], the learner chooses xt ∈ Xoco

and the learner suffers loss ft(xt). The goal of the learner is to minimize regret,

RegOCO
T (FTRL) =

T∑
t=1

ft(xt) − min
x∈Xoco

T∑
t=1

ft(x). (2.1)

Let R : Xoco → R be an α-strongly convex regularizer satisfying |R(x) − R(x̃)| ≤ D

for all x, x̃ ∈ Xoco. The FTRL algorithm chooses iterates xt as

xt ∈ arg min
x∈Xoco

t−1∑
s=1

fs(x) +
R(x)
η

, (2.2)

where η is a tunable parameter referred to as the step-size. The following theorem

provides an upper bound on RegOCO
T (FTRL).

Theorem 2.1. FTRL (Eq. (2.2)) satisfies

∥xt+1 − xt∥Xoco ≤ η
L f

α
and RegOCO

T (FTRL) ≤
D
η
+ η

T L2
f

α
,

where ∥ · ∥Xoco denotes the norm associated with Xoco. Choosing η =
√

αD
T L2

f
yields

RegOCO
T (FTRL) ≤ O

√D
α

T L2
f

 .
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We first state and prove two lemmas and then end this subsection by using

them to prove the above theorem. In what follows, let f0 =
R
η
. The analysis in this

section closely follows Karlin [2017].

Lemma 2.2.1. For all x ∈ Xoco, FTRL (Eq. (2.2)) satisfies

T∑
t=0

ft(x) ≥
T∑

t=0

ft(xt+1).

Proof. We use proof by induction on T . The base case is T = 0. By definition,

x1 ∈ arg minx∈Xoco
R(x). Therefore, R(x) ≥ R(x1) for all x ∈ Xoco. Recalling the notation

f0 =
R
η

proves the base case. Now, assume that the lemma is true for T − 1. That is,

T−1∑
t=0

ft(x) ≥
T−1∑
t=0

ft(xt+1).

Let x ∈ Xoco be arbitrary. Since xT+1 ∈ arg minx∈Xoco

∑T
t=0 ft(x), we have

T∑
t=0

ft(x) ≥
T∑

t=0

ft(xT+1)

=

T−1∑
t=0

ft(xT+1) + fT (xT+1)

≥

T−1∑
t=0

ft(xt+1) + fT (xT+1) by inductive hypothesis

=

T∑
t=0

ft(xt+1).

This completes the proof. ■

Lemma 2.2.2. For all x ∈ Xoco, FTRL (Eq. (2.2)) satisfies

T∑
t=1

ft(xt) −
T∑

t=1

ft(x) ≤
D
η
+

T∑
t=1

ft(xt) − ft(xt+1).

24



Proof. Note that

T∑
t=1

ft(xt) −
T∑

t=1

ft(x) = f0(x) − f0(x1)︸          ︷︷          ︸
(a)

+

T∑
t=1

ft(xt) −
T∑

t=1

ft(xt+1)︸                       ︷︷                       ︸
(b)

+

T∑
t=0

ft(xt+1) −
T∑

t=0

ft(x)︸                      ︷︷                      ︸
(c)

.

Term (a) is bounded above by D
η

from using f0 =
R
η

and the definition of D. Term

(c) is at most 0 from using Lemma 2.2.1. This yields the desired inequality. ■

Now, we restate Theorem 2.1 and prove it using the above two lemmas.

Theorem 2.1. FTRL (Eq. (2.2)) satisfies

∥xt+1 − xt∥Xoco ≤ η
L f

α
and RegOCO

T (FTRL) ≤
D
η
+ η

T L2
f

α
,

where ∥ · ∥Xoco denotes the norm associated with Xoco. Choosing η =
√

αD
T L2

f
yields

RegOCO
T (FTRL) ≤ O

√D
α

T L2
f

 .
Proof. Let x∗ ∈ arg minx∈Xoco

∑T
t=1 ft(x). Using Lemma 2.2.2 we have

T∑
t=1

ft(xt) −
T∑

t=1

ft(x∗) ≤
D
η
+

T∑
t=1

ft(xt) − ft(xt+1). (2.3)

We can bound the summands in the sum above as follows. Define f0:t−1(x) =∑t−1
s=0 fs(x). Then, xt ∈ arg minx∈Xoco

f0:t−1(x). and xt+1 ∈ arg minx∈Xoco
f0:t(x). Since { fs}

T
s=1

are convex, R is α-strongly-convex, and f0 =
R
η
, we have that f0:t−1 is α

η
-strongly-

convex. So,

f0:t−1(xt+1) ≥ f0:t−1(xt) +
α

2η
∥xt+1 − xt∥

2
Xoco

,

f0:t(xt) ≥ f0:t(xt+1) +
α

2η
∥xt+1 − xt∥

2
Xoco

.

25



Adding the above two inequalities yields

ft(xt) − ft(xt+1) ≥
α

η
∥xt+1 − xt∥

2
Xoco

. (2.4)

Since ft are convex and L f -Lipschitz continuous, we also have

ft(xt) − ft(xt+1) ≤ L f ∥xt+1 − xt∥Xoco . (2.5)

Combining Eqs. (2.4) and (2.5) we have

∥xt+1 − xt∥Xoco ≤ η
L f

α
.

This proves the first part of the theorem. Now, using this in Eq. (2.5) we have

ft(xt) − ft(xt+1) ≤ η
L2

f

α
. (2.6)

Finally, substituting this in Eq. (2.3) proves the second part of the theorem. ■

2.3 Concentration Inequalities

We end this chapter with concentration inequalities that we use in this disser-

tation. While there exist more general statements of these results, we tailor the

presentation for our purposes. The first inequality is Hoeffding’s inequality that

bounds the tail probability of sub-Gaussian random variables, i.e., random vari-

ables whose tail probability is bounded by a Gaussian. For our purposes, it suf-

fices to consider the special case of bounded random variables.
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Lemma 2.3.1 (Hoeffding’s Inequality). Let (Zi)m
i=1 be independent and identically dis-

tributed (i.i.d.) random variables with Zi ∈ [a, b] and E [Zi] = µ. Then,

Pr
 m∑

i=1

Zi < w

 ≤ exp
(
−

2(w − mµ)2

m(b − a)2

)
.

In particular, if m ≥ 2w
µ

, then w = α mµ for 0 < α ≤ 1
2 and

Pr
 m∑

i=1

Zi < w

 ≤ exp
(
−

2µ2m(α − 1)2

(b − a)2

)
≤ exp

(
−

µ2m
2(b − a)2

)
.

This inequality is standard throughout the literature and a proof can be found

in many textbooks, e.g., Wainwright [2019, Proposition 2.5]. Sometimes we en-

counter a sequence of random variables that is neither independent nor identi-

cally distributed. However, if it is a submartingale or supermartingale difference

sequence, then its tail probability can be bounded using the Azuma-Hoeffding

inequality. For our purposes, it suffices to consider the submartingale case. Infor-

mally, a sequence of random variables is a submartingale difference sequence if

the expected value of a random variable conditioned on the past is non-negative.

We make this precise in the following definitions before stating the Azuma-

Hoeffding inequality.

Definition 2.3.1 (Filtration). Let (Ω,F , P) be a probability space. We say that the

sequence (Fi)∞i=1 is a filtration if, for all i ≥ 1, (i) Fi is a sub-σ-algebra of F ; and (ii)

Fi ⊆ Fi+1.

Definition 2.3.2 (Submartingale Difference Sequence). Let (Ω,F , P) be a probabil-

ity space and (Fi)∞i=1 be a filtration. Let (Zi)∞i=1 be a sequence of random variables
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adapted to (Fi)∞i=1, i.e., Zi is Fi-measurable for all i ≥ 1. We say that ((Zi,Fi))∞i=1 is a

submartingale difference sequence if E [Zi | Fi−1] ≥ 0 for all i ≥ 1.

Lemma 2.3.2 (Azuma-Hoeffding Inequality). Let ((Zi,Fi))∞i=1 be a submartingale dif-

ference sequence that satisfies Zi ∈ [−n, n] and E [Zi] ≥ µ > 0. Then, ((Zi−µ,Fi))∞i=1 is also

a submartingale difference sequence and

Pr
 m∑

i=1

Zi ≤ 0

 = Pr
 m∑

i=1

Zi − µ < −mµ

 ≤ exp
(
−
µ2m
4n2

)
.

This inequality is also standard and a proof can be found in many textbooks,

e.g., Wainwright [2019, Corollary 2.20]. The next lemma provides a bound on

the tail probability of the sum of random variables whose tail probabilities are

subexponential. We are not aware of a statement in this form in the literature, so

we also provide a proof for completeness.

Lemma 2.3.3. Let (Zi)m
i=1 be i.i.d. random variables with Zi ∈ Z+, E [Zi] = µ > 0, and

Pr [Zi ≥ z] ≤ c′ exp
(
−

z
c

)
for some constants c, c′ > 0. If t ≥ 4mcc′, then

Pr
 m∑

i=1

Zi ≥ t

 ≤ exp
(
−

t
4c

)
.

Proof. Let Z denote a random variable with the same distribution as Z1. We can
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upper bound its moment generating function as

E
[
exp (sZ)

]
=

∫ ∞

0
Pr

[
exp (sZ) ≥ t

]
dt

=

∫ ∞

0
Pr

[
Z ≥

ln t
s

]
dt

≤ c′
∫ ∞

0
exp

(
−

ln t
sc

)
dt

= c′
∫ ∞

0
t−

1
sc dt

= c′
(
1 −

1
sc

)−1 [
t(1− 1

sc )
]∞

0

= c′
sc

1 − sc
if sc < 1

≤ 2scc′ if sc ≤
1
2

≤ exp
(
2scc′

)
. (2.7)
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Let S m =
∑m

i=1 Zi. Using Chernoff’s bound, we have

Pr [S m ≥ t] = Pr
[
exp(sS m) ≥ exp(st)

]
≤
E

[
exp(sS m)

]
exp(st)

=
E

[
exp(s

∑m
i=1 Zi)

]
exp(st)

=

∏m
i=1 E

[
exp(sZi)

]
exp(st)

since Zi are i.i.d.

≤ exp
(
2mscc′ − st

)
from Eq. (2.7)

≤ exp
(
2st
4
− st

)
since t ≥ 4mcc′

= exp
(
−

st
2

)
= exp

(
−

t
4c

)
,

where the last equality follows by choosing s = 1
2c . ■

We end this section with a statement of Khintchine’s inequality that suffices

for our purposes. A stronger statement and a proof can be found in, e.g., Wolff

[2003, Proposition 4.5].

Lemma 2.3.4 (Khintchine’s Inequality). Let (Zi)m
i=1 be i.i.d. random variables with

Pr[Zi = 1] = Pr[Zi = −1] = 1
2 . Let x1, . . . , xm ∈ R. Then, m∑

i=1

|xi|
2


1
2

≤

E
∣∣∣∣∣∣∣

m∑
i=1

Zixi

∣∣∣∣∣∣∣
 .
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CHAPTER 3

NON-MONOTONIC RESOURCE UTILIZATION IN THE BANDITS WITH

KNAPSACKS PROBLEM

In this chapter we study a generalization of the classic stochastic multi-

armed bandit problem, namely, bandits with knapsacks. Bandits with knapsacks

(BwK) [Badanidiyuru et al., 2018] is an influential model of online decision-making

under uncertainty that incorporates resource consumption constraints. In each

round, the decision-maker observes an outcome consisting of a reward and a vec-

tor of nonnegative resource consumptions, and the budget of each resource is

decremented by its consumption. In this chapter we introduce a natural gener-

alization of the stochastic BwK problem that allows non-monotonic resource uti-

lization. In each round, the decision-maker observes an outcome consisting of

a reward and a vector of resource drifts that can be positive, negative or zero,

and the budget of each resource is incremented by its drift. Our main result is

a Markov decision process (MDP) policy that has constant regret against a linear

programming (LP) relaxation when the decision-maker knows the true outcome

distributions. We build upon this to develop a learning algorithm that has log-

arithmic regret against the same LP relaxation when the decision-maker does not

know the true outcome distributions. We also present a reduction from BwK to

our model that shows our regret bound matches existing results [Li et al., 2021a].

This chapter is based on joint work with Robert Kleinberg [Kumar and Kleinberg,

2022a].
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3.1 Introduction

Multi-armed bandits are the quintessential model of online decision-making un-

der uncertainty in which the decision-maker must trade-off between exploration

and exploitation. They have been studied extensively and have numerous appli-

cations, such as clinical trials, ad placements, and dynamic pricing to name a few.

We refer the reader to Bubeck and Cesa-Bianchi [2012], Slivkins [2019], Lattimore

and Szepesvári [2020] for an introduction to bandits. An important shortcoming

of the basic stochastic bandits model is that it does not take into account resource

consumption constraints that are present in many of the motivating applications.

For example, in a dynamic pricing application the seller may be constrained by a

limited inventory of items that can run out well before the end of the time horizon.

The bandits with knapsacks (BwK) model [Tran-Thanh et al., 2010, 2012, Badani-

diyuru et al., 2013, 2018] remedies this by endowing the decision-maker with some

initial budget for each of m resources. In each round, the outcome is a reward and

a vector of nonnegative resource consumptions, and the budget of each resource

is decremented by its consumption. The process ends when the budget of any re-

source becomes nonpositive. However, even this formulation fails to model that

in many applications resources can get replenished or renewed over time. For

example, in a dynamic pricing application a seller may receive shipments that

increase their inventory level.
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ETCB CB OPT LP

O(log T )

O(log T )

O(1)

O(1)Not known
even for BwK.

Upper bound on OPT.
“Choose fractional
amount of each arm
in a round”.

Total expected
reward of an
algorithm.

Figure 3.1: Our MDP policy (CB) has constant regret with respect to a linear pro-
gramming relaxation (LP) and hence, with respect to the optimal MDP policy. Our
learning algorithm (ETCB) has logarithmic regret with respect to the same relax-
ation.

Contributions In this chapter we introduce a natural generalization of BwK

by allowing non-monotonic resource utilization. The decision-maker starts with

some initial budget for each of m resources. In each round, the outcome is a re-

ward and a vector of resource drifts that can be positive, negative or zero, and

the budget of each resource is incremented by its drift. A negative drift has the

effect of decreasing the budget akin to consumption in BwK and a positive drift

has the effect of increasing the budget. We consider two settings: (i) when the

decision-maker knows the true outcome distributions and must design a Markov

decision process (MDP) policy; and (ii) when the decision-maker does not know the

true outcome distributions and must design a learning algorithm.

Our main contribution is an MDP policy, ControlBudget (CB), that has constant

regret with respect to a linear programming (LP) relaxation. Such a result was

not known even for BwK. We build upon this to develop a learning algorithm,
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ExploreThenControlBudget (ETCB), that has logarithmic regret with respect to the

same LP relaxation. We also present a reduction from BwK to our model and

show that our regret bound matches existing results.

Instead of merely sampling from the optimal probability distribution over

arms, our policy samples from a perturbed distribution to ensure that the budget

of each resource stays close to a decreasing sequence of thresholds. The sequence

is chosen such that the expected leftover budget is a constant and proving this is

a key step in the regret analysis. Our work combines aspects of related work on

logarithmic regret for BwK [Flajolet and Jaillet, 2015, Li et al., 2021a].

Related Work Multi-armed bandits have a rich history and logarithmic

instance-dependent regret bounds have been known for a long time [Lai and

Robbins, 1985, Auer et al., 2002a]. Since then, there have been numerous papers

extending the stochastic bandits model in a variety of ways [Auer et al., 2002b,

Slivkins, 2014, Kleinberg et al., 2019, Badanidiyuru et al., 2018, Immorlica et al.,

2022, Agrawal and Devanur, 2014, 2016].

To the best of our knowledge, there are three papers on logarithmic regret

bounds for BwK. Flajolet and Jaillet [2015] showed the first logarithmic regret

bound for BwK. In each round, their algorithm finds the optimal basis for an

optimistic version of the LP relaxation, and chooses arms from the resulting ba-

sis to ensure that the average resource consumption stays close to a pre-specified

level. Even though their regret bound is logarithmic in T and inverse linear in the
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suboptimality gap, it is exponential in the number of resources. Li et al. [2021a]

showed an improved logarithmic regret bound that is polynomial in the number

of resources, but it scales inverse quadratically with the suboptimality gap and

their definition of the gap is different from the one in Flajolet and Jaillet [2015].

The main idea behind improving the dependence on the number of resources is

to proceed in two phases: (i) identify the set of arms and binding resources in the

optimal solution; (ii) in each round, solve an adaptive, optimistic version of the

LP relaxation and sample an arm from the resulting probability distribution. Fi-

nally, Sankararaman and Slivkins [2021] show a logarithmic regret bound for BwK

with respect to a fixed-distribution benchmark. However, the regret of this bench-

mark itself with the optimal MDP policy can be as large as O(
√

T ) [Flajolet and

Jaillet, 2015, Li et al., 2021a].

3.2 Preliminaries

3.2.1 Model

Let T denote a finite time horizon, X = {1, . . . , k} a set of k arms, J = {1, . . . ,m}

denote a set of m resources, and B0, j = B denote the initial budget of resource j.

In each round t ∈ [T ], if the budget of any resource is less than 1, then Xt = {1}.

Otherwise,Xt = X. The algorithm chooses an arm xt ∈ Xt and observes an outcome

ot = (rt, dt,1, . . . , dt,m) ∈ [0, 1]×[−1, 1]m. The algorithm earns reward rt and the budget
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of resource j ∈ J is incremented by drift dt, j as Bt, j = Bt−1, j + dt, j.

Each arm x ∈ X has an outcome distribution over [0, 1] × [−1, 1]m and ot is

drawn from the outcome distribution of the arm xt. We use µo
x = (µr

x, µ
d,1
x , . . . , µd,m

x )

to denote the expected outcome vector of arm x consisting of the expected reward

and the expected drifts for each of the m resources.1 We also use µd, j = (µd, j
x : x ∈ X)

to denote the vector of expected drifts for resource j. We assume that arm x0 =

1 ∈ X is a null arm with three important properties: (i) its reward is zero a.s.;

(ii) the drift for each resource is nonnegative a.s.; and (iii) the expected drift for

each resource is positive. The second and third properties of the null arm plus

the model’s requirement that xt = 1 if ∃ j s.t. Bt−1, j < 1 ensure that the budgets are

nonnegative a.s. and can be safely increased from 0.

Our model is intended to capture applications featuring resource renewal,

such as the following. In each round, each resource gets replenished by some

random amount and the chosen arm consumes some random amount of each re-

source. If the consumption is less than replenishment, the resource gets renewed.

The random variable dt, j then models the net replenishment minus consumption.

The full model presented above is more general because it allows both the con-

sumption and replenishment to depend on the arm pulled.

We consider two settings in this chapter.

1In fact, our proofs remain valid even if the outcome distribution depends on the past history
provided the conditional expectation is independent of the past history and fixed for each arm. In
this case µo

x denotes the conditional expectation of ot when arm x is pulled in round t. Since our
proofs rely on the Azuma-Hoeffding inequality (Lemma 2.3.2), we need this assumption on the
conditional expectation to hold.

36



MDP setting The decision-maker knows the true outcome distributions. In this

setting the model implicitly defines an MDP, where the state is the budget

vector, the actions are arms, and the transition probabilities are defined by

the outcome distributions of the arms.

Learning setting The decision-maker does not know the true outcome distribu-

tions.

The goal is to design to an MDP policy for the first setting and a learning algo-

rithm for the second, and bound their regret against an LP relaxation as defined

in the next subsection.

Formulation as an online decision-making problem. Before continuing, we

take a brief detour to show that the problem defined above can be formulated

in the online decision-making framework (Definition 2.1.6), which is defined by

the tuple (X,Ψ,L,G,Φ, ϕ,Π,ENV).

• Actions X are the same as above.

• States Ψ = Rm
+ × X.

• Initial state ψ0 = ((B)m
j=1, x

0).

• Dynamics function gt = g for all rounds, where

g(ψt−1, xt) = g((Bt−1, j)m
j=1, xt−1), xt) = ((Bt−1, j + dt, j)m

j=1, xt) = ((Bt, j)m
j=1, xt).
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Here, (dt, j)m
j=1 are drifts sampled from the drift distribution of arm xt. Here, G

is the set of all mappings from (Rm
+×X)×X to ∆(Rm

+)×X that are defined by the

previous equation, and parameterized by all mappings from X to ∆([−1, 1]m)

representing the drift distributions of the arms.

• Loss function lt = l for all rounds, where l(ψt) = l((Bt, j)m
j=1, xt) = −rt. Here, rt

is the reward sampled from the reward distribution of arm xt. Here, L is the

set of all mappings from X to ∆([−1, 0]).

• Feedback spaces Φl = [−1, 0] and Φg = Ψ.

• Feedback functions ϕl(l, ψt) = l(ψt) and ϕg(g, ψt−1, xt) = g(ψt−1, xt).

• Decisions Π is the set of all policies with the constraint that they pull the null

arm when the budget of any resource less than 1. That is, mappings π from

the history of dynamics feedback, h = (((Bs, j)m
j=1, xs))t

s=1, to ∆(X) such that π(h)

is a point-mass distribution on x0 if ∃ j such that Bt, j < 1.

• The environment ENV is stochastic.

For simplicity, in the rest of this chapter we will use the formalism and notation

defined previously instead of the one above.

3.2.2 Linear Programming Relaxation

Similar to Badanidiyuru et al. [2018, Lemma 3.1], we consider the following LP

relaxation that provides an upper bound on the total expected reward of any al-
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gorithm:

OPTLP = max
p

∑
x∈X

pxµ
r
x :

∑
x∈X

pxµ
d, j
x ≥

−B/T ∀ j ∈ J ,
∑
x∈X

px = 1, px ≥ 0 ∀x ∈ X

 . (3.1)

Lemma 3.2.1. The total expected reward of any algorithm is at most T · OPTLP.

The proof of this lemma, similar to those in existing works [Agrawal and De-

vanur, 2014, Badanidiyuru et al., 2018], follows from the observations that (i) the

variables p = {px : x ∈ X} can be interpreted as the probability of choosing arm x

in a round; and (ii) if we set px equal to the expected number of times x is chosen

by an algorithm divided by T , then it is a feasible solution for the LP.

Definition 3.2.1 (Regret). The regret of an algorithmA is defined as

RegBwK
T (A) = T · OPTLP − REW(A),

where REW(A) denotes the total expected reward ofA.

3.2.3 Assumptions

We assume that the initial budget of every resource is B ≤ T . This assumption is

without loss of generality because otherwise we can scale the drifts by dividing

them by the smallest budget. This results in a smaller support set for the drift

distribution that is still contained in [−1, 1].

Our assumptions about the null arm x0 are a major difference between our

model and BwK. In BwK the budgets can only decrease and the process ends
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when the budget of any resource reaches 0. However, in our model the budgets

can increase or decrease, and the process ends at the end of the time horizon. Our

assumptions about the null arm allow us to increase the budget from 0 without

making it negative.2 A side-effect of this is that in our model we can even assume

that B is a small constant because we can always increase the budget by pulling the

null arm, in contrast to existing literature on BwK that assume the initial budgets

are large and often scale with the time horizon.

A standard assumption for achieving logarithmic regret in stochastic bandits

is that the gap between the total expected reward of an optimal arm and that of

a second-best arm is positive. There are a few different ways in which one could

translate this to our model where the optimal solution is a mixture over arms.

We make the following choice. We assume that there exists a unique set of arms

X∗ that form the support set of the LP solution and a unique set of resources J∗

that correspond to binding constraints in the LP solution [Li et al., 2021a]. We

define the gap of the problem instance in Definition 3.4.1 and our uniqueness

assumption3 implies that the gap is strictly positive.

We make a few separation assumptions parameterized by four positive con-

stants that can be arbitrarily small. First, the smallest magnitude of the drifts,

δdrift = min{|µd, j
x | : x ∈ X, j ∈ J}, satisfies δdrift > 0. Second, the smallest sin-

2In a model where, in each round, each resource gets replenished by some random amount
and the chosen arm consumes some random amount of each resource, the null arm represents the
option to remain idle and do nothing while waiting for resource replenishment. See Section 3.10
for more discussion on the assumptions about the null arm.

3This assumption is essentially without loss of generality because the set of problem instances
with multiple optimal solutions is a set of measure zero.
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gular value of the LP constraint matrix, denoted by σmin, satisfies 0 < σmin < 1.

Third, the LP solution p∗ satisfies p∗x ≥ δsupport > 0 for all x ∈ X∗. Fourth,∑
x∈X∗ p∗xµ

d, j
x ≥ δslack > 0 for all resources j < J∗. The first assumption is neces-

sary for logarithmic regret bounds because otherwise one can show that the re-

gret of the optimal algorithm for the case of one resoure and one zero-drift arm is

Θ(
√

T ) (Section 3.11). The second and third assumptions are essentially the same

as in existing literature on logarithmic regret bounds for BwK [Flajolet and Jaillet,

2015, Li et al., 2021a]. The fourth assumption allows us to design algorithms that

can increase the budgets of the non-binding resources away from 0, thereby re-

ducing the number of times the algorithm has to pull the null arm. Otherwise, if

they have zero drift, then, as stated above, the regret of the optimal algorithm for

the case of one resource and one zero-drift arm is Θ(
√

T ) (Section 3.11).

3.3 MDP Policy with Constant Regret

In this section we design an MDP policy, ControlBudget (Algorithm 2), with con-

stant regret in terms of T for the setting when the learner knows the true out-

come distributions and our model implicitly defines an MDP (Section 3.2.1). At a

high level, ControlBudget, which shares similarities with Flajolet and Jaillet [2015,

Algorithm UCB-Simplex], plays arms to keep the budgets close to a decreasing

sequence of thresholds. The choice of this sequence allows us to show that the ex-

pected leftover budgets and the expected number of null arm pulls are constants.
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This is a key step in proving the final regret bound. We start by considering the

special case of one resource in Section 3.3.1 because it provides intuition for the

general case of multiple resources in Section 3.3.2. In this section, we present

algorithms and results with proof sketches. We defer detailed proofs to later sub-

sections.

3.3.1 Special Case: One Resource

Since there is only one resource we drop the superscript j in this section. We say

that an arm x is a positive (resp. negative) drift arm if µd
x > 0 (resp. µd

x < 0). The

following lemma characterizes the possible solutions of the LP (Eq. (3.1)).

Lemma 3.3.1. The solution of the LP relaxation (Eq. (3.1)) is supported on at most two

arms. Furthermore, if T ≥ B/δdrift, then the solution belongs to one of three categories: (i)

supported on a single positive drift arm; (ii) supported on the null arm and a negative drift

arm; (iii) supported on a positive drift arm and a negative drift arm.

The proof of this lemma follows from properties of LPs and a case analysis of

which constraints are tight. Our MDP policy, ControlBudget (Algorithm 1), deals

with the three cases separately and satisfies the following regret bound.4

4In this theorem and the rest of the chapter, we use C̃ to denote a constant that depends on prob-
lem parameters, including k,m, and the various separation constants mentioned in Section 3.2.3,
but does not depend on T . We use this notation because the main focus of this work is how the regret
scales as a function of T .
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Algorithm 1: ControlBudget (for m = 1)
Input: time horizon T , initial budget B, set of arms X, set of resources J ,

constant c > 0.
1 Set B0 = B.
2 if LP solution is supported on positive drift arm xp then
3 for t = 1, 2, . . . ,T do
4 If Bt−1 < 1, pull x0. Otherwise, pull xp.
5 end
6 else if LP solution is supported on null arm x0 and negative drift arm xn then
7 for t = 1, 2, . . . ,T do
8 Define threshold τt = c log(T − t).
9 If Bt−1 < max{1, τt}, pull x0. Otherwise, pull xn.

10 end
11 else if LP solution is supported on positive drift arm xp and negative drift arm xn

then
12 for t = 1, 2, . . . ,T do
13 Define threshold τt = c log(T − t).
14 If Bt−1 < 1, pull x0. If 1 ≤ Bt−1 < τt, pull xp. Otherwise, pull xn.
15 end

Theorem 3.1. If c ≥ 12
δ2

drift
, the MDP policy ControlBudget (Algorithm 1) satisfies

RegBwK
T (ControlBudget) ≤ C̃,

where C̃ = O
(
δ−4

drift ln
((

1 − exp
(
−
δ2

drift

8

))−1)
+ δ−1

drift

(
1 − exp

(
δ2

drift

))−2
)

is a constant.

We defer all proofs in this subsection to Section 3.7. The proof of Theorem 3.1

follows from the following sequence of lemmas.

Lemma 3.3.2. If the LP solution is supported on a positive drift arm xp, then

RegBwK
T (ControlBudget) ≤ C̃,

where C̃ = O
(
δ−3

drift ln
((

1 − exp
(
−
δ2

drift

8

))−1))
is a constant.
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Decreasing
sequence of
thresholds.

Budget
τt

τt+1

τt+2

1

0
Roundt t + 1 t + 2

Null arm
Positive drift arm
Negative drift arm

Last pull of null / pos-
itive drift arm early in
the time horizon: low
probability event.

Last pull of null / posi-
tive drift arm late in the
time horizon: budget is
small, few rounds left.

Figure 3.2: An illustration of ControlBudget for one resource when the optimal
LP solution is supported on a positive drift arm and a negative drift arm. The
algorithm maintains a decreasing sequence of thresholds {τt}. If the budget is
above τt, it plays the negative drift arm (indicated by green in the figure). If the
budget is below the τt but above 1, it plays the positive drift arm (indicated by
orange in the figure). Otherwise, it plays the null arm (indicated by grey in the
figure). Since the thresholds are decreasing, the algorithm is more aggressive
about using the negative drift arm as it approaches the end of the time horizon.

We can write the regret in terms of the norm of ξ = (ξxp), where ξxp is the

expected difference between the number of times xp is played by the LP and by

ControlBudget. This is equal to the expected number of times the policy plays the

null arm and, in turn, is equal to the expected number of rounds in which the

budget is below 1. Since both x0 and xp have positive drift, this is a transient

random walk that drifts away from 0. It is known that such a walk spends a
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constant number of rounds in any state in expectation.

Lemma 3.3.3. If the LP solution is supported on the null arm x0 and a negative drift arm

xn, then

RegBwK
T (ControlBudget) ≤ C̃ · E[BT ],

where C̃ = O(δ−1
drift) is a constant.

We can write the regret in terms of the norm of ξ = (ξx0 , ξxn), where ξx is the

expected difference between the number of times x is played by the LP and by

ControlBudget. Since both constraints (resource and sum-to-one) are tight, the

lemma follows by writing ξ = D−1b and taking norms, where D is the LP con-

straint matrix and b = (−E[BT ], 0).

Lemma 3.3.4. If the LP solution is supported on a positive drift arm xp and a negative

drift arm xn, then

RegBwK
T (ControlBudget) ≤ C̃ ·max{E[BT ],E[Nx0]},

where E[Nx0] denotes the expected number null arm pulls and C̃ = O(δ−1
drift) is a constant.

This lemma follows similarly to the previous one by writing regret in terms of

the norm of ξ = (ξxp , ξxn) and writing ξ = D−1b for b = (−E[BT ],E[Nx0]).

Therefore, proving that RegBwK
T (ControlBudget) is a constant in T requires prov-

ing that both the expected leftover budget and expected number of null arm pulls

are constants. Intuitively, we could ensure E[BT ] is small by playing the negative
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drift arm whenever the budget is at least 1. However, there is constant probabil-

ity of the budget decreasing below 1 and the expected number of null arm pulls

becomes O(T ). ControlBudget solves the tension between the two objectives by

carefully choosing a decreasing sequence of thresholds τt. The threshold is ini-

tially far from 0 to ensure low probability of pre-mature resource depletion, but

decreases to 0 over time to ensure small expected leftover budget and decreases

at a rate that ensures the expected number of null arm pulls is a constant.

Lemma 3.3.5. If the LP solution is supported on a positive drift arm xp and a negative

drift arm xn, and c ≥ 12
δ2

drift
, then

E[Nx0] ≤ C̃,

where C̃ = O
(
δ−3

drift ln
((

(1 − exp
(
−
δ2

drift

8

))−1))
is a constant.

If the budget is below the threshold, i.e., Bt−1 < τt for some t, then ControlBudget

pulls xp until Bs ≥ τs+1 for some s ≥ t. Since xp has positive drift, the event that

repeated pulls decrease the budget towards 0 is a low probability event. Using

this, our choice of τt = c log(T − t) for an appropriate constant c, and summing

over all rounds shows that the expected number of rounds in which the budget is

less than 1 is a constant in T .

Lemma 3.3.6. If the LP solution is supported on two arms, and c ≥ 12
δ2

drift
, then

E[BT ] ≤ C̃,

where C̃ = Õ
((

1 − exp
(
δ2

drift

))−2
+ δ−2

drift

)
is a constant.
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If Bt−1 ≥ τt, then ControlBudget pulls a negative drift arm xn. We can upper

bound the expected leftover budget by conditioning on q, the number of consec-

utive pulls of xn at the end of the timeline. The main idea in completing the proof

is that (i) if q is large, then it corresponds to a low probability event; and (ii) if q is

small, then the budget in round T − q was smaller than τq, which is a decreasing

sequence in q, and there are few rounds left so the budget cannot increase by too

much.

3.3.2 General Case: Multiple Resources

Now we use the ideas from Section 3.3.1 to tackle the case of m > 1 resources that

is much more challenging. Generalizing Lemma 3.3.1, the solution of the LP re-

laxation (Eq. (3.1)) is supported on at most min{k,m} arms. Informally, our MDP

policy, ControlBudget (Algorithm 2), samples an arm from a probability distribu-

tion that ensures drifts bounded away from 0 in the “correct directions”: (i) a

binding resource j has drift at least γt if Bt−1, j < τt and drift at most −γt if Bt−1, j ≥ τt;

and (ii) a non-binding resource j has drift at least 1
2γt if Bt−1, j < τt. This allows

us to show that the expected leftover budget for each binding resource and the

expected number of null arm pulls are constants in terms of T .

Theorem 3.2. If c ≥ 12
γ∗2

, the regret of ControlBudget (Algorithm 2) satisfies

RegBwK
T (ControlBudget) ≤ C̃,
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Algorithm 2: ControlBudget (for general m)
Input: time horizon T , initial budget B, set of arms X, set of resources J ,

constant c > 0.
1 Set B0, j = B for all j ∈ J .
2 Define threshold τt = c log(T − t).
3 for t = 1, 2, . . . ,T do
4 if ∃ j ∈ J such that Bt−1, j < 1 then
5 Pull the null arm x0.
6 else
7 Define D to be the square submatrix of the LP constraint matrix,

whose columns correspond to the arms X∗ and whose rows
correspond to the binding constraints in the LP solution. Let the
first |X∗| − 1 rows correspond to binding budget constraints and the
last row correspond to the sum-to-1 constraint. Define the vector b
to be the right-hand side of the LP corresponding the rows in D.

8 Define st ∈ {±1}|X
∗ |−1 × 0 as follows. Let j denote the resource

corresponding to row i ∈ [|X∗| − 1] in the matrix D and vector b.
Then, the ith entry of st is +1 if Bt−1, j < τt and −1 otherwise.

9 Define γt to be the solution to the following constrained
optimization problem:

max
γ∈[0,1]

{
γ : p = D−1(b + γst) ≥ 0, pTµd, j ≥

γ

2
∀ j ∈ J \ J∗ if Bt−1, j < τt

}
.

(3.2)
10 Sample an arm from the probability distribution pt = D−1(b + γtst).
11 end
12 end

where γ∗ (defined in Lemma 3.3.9) and C̃ are constants with

C̃ = O
(
mσ−1

min

(
m(γ∗)−3 ln

((
(1 − exp

(
−γ∗2

))−1
)
+

(
1 − exp(γ∗2)

)−2
))
.

We defer all proofs in this subsection to Section 3.8. The proof of Theorem 3.2

follows from the following sequence of lemmas. The next two lemmas are gen-

eralizations of Lemmas 3.3.3 and 3.3.4 with essentially the same proofs. Recall J∗
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denotes the unique set of resources that correspond to binding constraints in the

LP solution (Section 3.2.3).

Lemma 3.3.7. If the LP solution includes the null arm x0 in its support, then

RegBwK
T (ControlBudget) ≤ C̃ ·

∑
j∈J∗
E[BT, j]

 ,
where C̃ = O(σ−1

min) is a constant.

Lemma 3.3.8. If the LP solution does not include the null arm x0 in its support, then

RegBwK
T (ControlBudget) ≤ C̃ ·

∑
j∈J∗
E[BT, j] + E[Nx0]

 ,
where E[Nx0] denotes the expected number of null arm pulls and C̃ = O(σ−1

min) is a constant.

Lemmas 3.3.10 and 3.3.11 are generalizations of Lemmas 3.3.5 and 3.3.6

with similar proofs after taking a union bound over resources. But we first

need Lemma 3.3.9 that lets us conclude there is drift of magnitude at least γ∗ > 0

in the “correct directions” as stated earlier.

Lemma 3.3.9. [Flajolet and Jaillet, 2015, Lemma 14] In each round t, γt ≥ γ∗ =

σmin min{δsupport,δslack}

4m .

The proof of this lemma is identical to Flajolet and Jaillet [2015, Lemma 14] but

we provide a proof in Section 3.8 for completeness.

Lemma 3.3.10. If the LP solution does not include the null arm in its support, then

E[Nx0] ≤ C̃,

where C̃ = O
(
m(γ∗)−3 ln

((
(1 − exp

(
−
γ∗2

8

))−1))
is a constant.
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Lemma 3.3.11. If the LP solution is supported on more than one arm, then for all j ∈ J∗

E[BT, j] ≤ C̃,

where C̃ = Õ
((

1 − exp(γ∗2)
)−2
+ (γ∗)−2

)
is a constant.

A subtle but important point is that the regret analysis does not require

ControlBudget to know the true expected drifts in order to find the probabil-

ity vector pt. It simply requires the algorithm to know X∗, J∗, and find any

probability vector pt that ensures drifts bounded away from 0 in the “correct

directions” as stated earlier. We use this property in our learning algorithm,

ExploreThenControlBudget (Algorithm 3), in the next section.

3.4 Learning Algorithm with Logarithmic Regret

In this section we design a learning algorithm, ExploreThenControlBudget (Algo-

rithm 3), with logarithmic regret in terms of T for the setting when the learning

does not know the true distributions. Our algorithm, which can be viewed as

combining aspects of Li et al. [2021a, Algorithm 1] and Flajolet and Jaillet [2015,

Algorithm UCB-Simplex], proceeds in three phases. It uses phase one of Li et al.

[2021a, Algorithm 1] to identify the set of optimal arms X∗ and the set of binding

constraints J∗ by playing arms in a round-robin fashion, and using confidence in-

tervals and properties of LPs. This is reminiscent of successive elimination [Even-

Dar et al., 2002], except that the algorithm tries to identify the optimal arms in-
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stead of eliminating suboptimal ones. In the second phase the algorithm con-

tinues playing the arms in X∗ in a round-robin fashion to shrink the confidence

radius further. In the third phase the algorithm plays a variant of the MDP policy

ControlBudget (Algorithm 2) with a slighly different optimization problem for γt

because it only has empirical esitmates of the drifts. In this section, we present

algorithms and results with proof sketches. We defer detailed proofs to later sub-

sections.

3.4.1 Additional Notation and Preliminaries

For all arms x ∈ X and rounds t ≥ k, define the upper confidence bound (UCB) of

the expected outcome vector µo
x as UCBt(x) = ōt(x)+ radt(x) · 1⃗, where 1⃗ denotes the

all-ones vector, radt(x) =
√

8nt(x)−1 log T denotes the confidence radius, nt(x) de-

notes the number of times x has been played before t, and ōt(x) = nt(x)−1 ∑
t ot1[xt =

x] denotes the empirical mean outcome vector of x. The lower confidence bound

(LCB) is defined similarly as LCBt(x) = ōt(x) − radt(x) · 1⃗.

For all arms x ∈ X, let OPT−x denote the value of the LP relaxation (Eq. (3.1))

with the additional constraint px = 0, and for all resources j ∈ J , let OPT− j denote

the value when the objective has an extra −
∑

x pxµ
d, j
x + B/T term [Li et al., 2021a].

Intuitively, these represent how important it is to play arm x or make the resource

constraint for j a binding constraint. Define the UCB of OPT−x to be the value

of the LP when the expected outcome is replaced by its UCB, and denote this by
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UCBt(OPT−x). The LCB for OPT−x, and UCB and LCB for OPT− j and OPTLP are

defined similarly.

Definition 3.4.1 (Gap [Li et al., 2021a]). The gap of the problem instance is defined

as

∆ = min
{

min
x∈X∗
{OPTLP − OPT−x} ,min

j<J∗

{
OPTLP − OPT− j

}}
.

3.4.2 Learning Algorithm and Regret Analysis

Theorem 3.3. If c ≥ 12
γ∗

, the regret of ExploreThenControlBudget (Algorithm 3) satisfies

RegBwK
T (ExploreThenControlBudget) ≤ C̃ · log T,

where γ∗ (defined in Lemma 3.3.9), C̃′ and C̃ are constants with C̃′ denoting the constant

in Theorem 3.2 and

C̃ = O

 km2

min{δ2
drift, σ

2
min}∆

2
+ k(γ∗)−2 + C̃′

 .
We defer all proofs in this subsection to Section 3.9. We refer to the three while

loops of ExploreThenControlBudget (Algorithm 3) as the three phases. The lemmas

and corollaries following the theorem below show that the first phase consists of at

most logarithmic number of rounds. It is easy to see that the second phase consists

of at most logarithmic number of rounds. The third phase plays a variant of the

MDP policy ControlBudget (Algorithm 2). There exists a feasible solution to the

optimization problem in Line 17 that ensures drifts bounded away from 0 in the
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Algorithm 3: ExploreThenControlBudget
Input: time horizon T , initial budget B, set of arms X, set of resources J ,

constant c > 0.
1 Set B0, j = B for all j ∈ J .
2 Initialize t = 1, X∗ = ∅, J′ = ∅.
3 while t < T − k and |X∗| + |J′| < m + 1 do
4 Play each arm in X \ {x0} in a round-robin fashion. Play x0 if ∃ j such

that Bt−1, j < 1.
5 For each x ∈ X, if UCBt(OPT−x) < LCBt(OPTLP), then add x to X∗.
6 For each j ∈ J , if UCBt(OPT− j) < LCBt(OPTLP), then add j to J′.
7 end
8 Set J∗ = J \ J′.
9 while t < T − |X∗| and nt(x) < 32 log T

γ∗2
for all x ∈ X∗, where γ∗ is defined

in Lemma 3.3.9 do
10 Play each arm in X∗ in a round-robin fashion.
11 end
12 while t < T do
13 if ∃ j ∈ J such that Bt−1, j < 1 then
14 Pull the null arm x0.
15 else
16 Define st as in Algorithm 2.
17 Choose (γt, pt) = maxγ∈[0,1] γ such that there exists a probability

vector p satisfying

LCBt(pTµd, j) ≥
γ

8
∀ j ∈ J \ J∗ if Bt−1, j < τt, (3.3)

LCBt(pTµd, j) ≥
γ

8
∀ j ∈ J∗ if Bt−1, j < τt (3.4)

UCBt(pTµd, j) ≤ −
γ

8
∀ j ∈ J∗ if Bt−1, j ≥ τt. (3.5)

18 Sample an arm from the probability distribution pt.
19 end
20 end
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“correct directions” (Section 3.9). Combining the analysis of the first two phases

with Theorem 3.2 lets us conclude that ExploreThenControlBudget has logarithmic

regret.

Definition 3.4.2 (Clean Event). The clean event is the event that for all x ∈ X and

all t ≥ k, (i) µo
x ∈ [LCBt(x),UCBt(x)]; and (ii) after the first n pulls of the null arm

the sum of the drifts for each resource is at least w, where w = 4096km2 log T
δ2

drift∆
2 and

n = min j∈J

{
2w
µ

d, j
x0

}
.

Lemma 3.4.1. The clean event occurs with probability at least 1 − 5kmT−2.

The lemma follows from the Azuma-Hoeffding inequality (Lemma 2.3.2).

Since the complement of the clean event contributes O(kmT−1) to the regret, it suf-

fices to bound the regret conditioned on the clean event.

Lemma 3.4.2. If the clean event occurs, then UCBt(OPTLP) − LCBt(OPTLP) ≤ 8m
σmin

radt.

A similar statement is true for OPT−x and OPT− j for all x ∈ X and j ∈ J .

The proof follows from a perturbation analysis of the LP and uses the confi-

dence radius to bound the perturbations in the rewards and drifts.

Corollary 3.4.1. If the clean event occurs and nt(x) > 2048m2 log T
σ2

min∆
2 for all x ∈ X, then

UCBt(OPT−x) < LCBt(OPTLP) and UCBt(OPT− j) < LCBt(OPTLP)

for all x ∈ X∗ and j ∈ J \ J∗.
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This follows from substituting the bound on nt(x) into the definition of radt(x)

and applying Lemma 3.4.2. In the worst case, each pull of an arm can cause the

budget to drop below 1, but the clean event implies that the first n pulls of x0 have

enough total drift to allow nt(x) pulls of each non-null arm in phase 1. This allows

us to upper bound the duration of phase 1 as follows.

Corollary 3.4.2. If the clean event occurs, then phase 1 of ExploreThenControlBudget

has at most

C̃ · log T

rounds, where C̃ = O
(

km2

min{δ2
drift,σ

2
min}∆

2

)
is a constant.

3.4.3 Reduction from BwK

Theorem 3.4. Suppose B
T ≥ δdrift. Consider a BwK instance such that (i) for each arm and

resource, the expected consumption of that resource differs from B
T by at least δdrift; and (ii)

all the other assumptions required by Theorem 3.3 (Section 3.2.3) are also satisfied. Then,

there is an algorithm for BwK whose regret satisfies the same bound as in Theorem 3.3

with the same constant C̃.

We present the details of the reduction at the end of Section 3.9.
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3.5 Experiments

In this section we present some simple experimental results. The implementa-

tion of our algorithms and code to reproduce the results are available at this

Github repository [Kumar and Kleinberg, 2022b]. For simplicity, we only con-

sider Bernoulli distributions, i.e., rewards are supported on {0, 1}, a positive drift

arm’s drifts are supported on {0, 1}, and a negative drift arm’s drifts are supported

on {0,−1}. We generate the data for the experiments as follows:

• Fig. 3.3 plot (a): We set T = 25, 000, B = 0, n = 2 and m = 1. The expected

reward and drifts for the arms are: (0; 0.1), (0.8; 0.4). The LP solution is sup-

ported on a single positive drift arm.

• Fig. 3.3 plot (b): We set T = 25, 000, B = 400, n = 2 and m = 1. The expected

reward and drifts for the arms are: (0; 0.4), (0.8;−0.3). The LP solution is

supported on the null arm and the negative drift arm.

• Fig. 3.3 plot (c): We set T = 25, 000, B = 400, n = 3 and m = 1. The expected re-

ward and drifts for the arms are: (0; 0.4), (0.8;−0.3), (0.1; 0.3). The LP solution

is supported on the positive drift arm and the negative drift arm.

• Fig. 3.3 plot (d): We set T = 25, 000, B = 3, n = 3 and m = 2. The expected re-

ward and drifts for the arms are: (0; 0.1, 0.08), (0.8;−0.2,−0.25), (0.1; 0.4, 0.5).

The LP solution is supported on the positive drift arm and the negative drift

arm.
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(a) ControlBudget with one resource
- case 1 (positive drift arm)

(b) ControlBudget with one resource
- case 2 (null plus negative drift
arm)

(c) ControlBudget with one resource
- case 3 (positive plus negative drift
arm)

(d) ControlBudget with multiple re-
sources

Figure 3.3: Regret of ControlBudget on a variety of test cases.

• Fig. 3.4 plot (a) and (b): We set T = 150, 000, B = 10, n = 3 and m = 1. The

expected reward and drifts for the arms are: (0; 0.9), (0.8;−0.6), (0.1; 0.7). The

LP solution is supported on the positive drift arm and the negative drift arm.

As our plots show (Fig. 3.3), our MDP policy, ControlBudget, performs quite

well and achieves constant regret.

Our learning algorithm does not perform as well empirically due to large con-
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(a) ControlBudget (b) ExploreThenControlBudget

Figure 3.4: Regret of ControlBudget and ExploreThenControlBudget on the same test
case. We modify ExploreThenControlBudget to use the empirical means instead of
UCB/LCB estimates for phase one as described in Section 3.5.

stant factors. Specifically, the number of rounds required for the confidence radius

to be small enough for phase one to successfully identify X∗ and J∗ is too large. In

our simple test cases, if we simply consider the empirical means, which are very

close to the true means, instead of the UCB/LCB estimates for phase one, then the

learning algorithm performs as expected: it achieves logarithmic regret by spend-

ing a logarithmic number of rounds identifying X∗ and J∗, and achieves constant

regret thereafter (Fig. 3.4).

3.6 Discussion

In this chapter we introduced a natural generalization of BwK that allows non-

monotonic resource utilization. We first considered the setting when the decision-

maker knows the true distributions and presented an MDP policy with constant
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regret against an LP relaxation. Then we considered the setting when the decision-

maker does not know the true distributions and presented a learning algorithm

with logarithmic regret against the same LP relaxation. Finally, we also presented

a reduction from BwK to our model and showed a regret bound that matches ex-

isting results [Li et al., 2021a].

An important direction for future research is to obtain optimal regret bounds.

The regret bound for our algorithm scales as O(log(T )poly(k)poly(m)∆−2), where k

is the number of arms, m is the number of resources and ∆ is the suboptimal-

ity parameter. A modification to our algorithm along the lines of Flajolet and

Jaillet [2015, algorithm UCB-Simplex] that considers each support set of the LP

solution explicitly leads to a regret bound that scales as O(log(T )poly(k)2m∆−1).

It is an open question, even for BwK, to obtain a regret bound that scales as

O(log(T )poly(k)poly(m)∆−1) or show that the trade-off between the dependence on

the number of resources and the suboptimality parameter is unavoidable.

Another natural follow-up to our work is to develop further extensions, such

as considering an infinte set of arms [Kleinberg et al., 2019], studying adversarial

observations [Auer et al., 2002b, Immorlica et al., 2022], or incorporating contex-

tual information [Slivkins, 2014, Agrawal and Devanur, 2016] as has been the case

elsewhere throughout the literature on bandits.
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3.7 Proofs for Section 3.3.1: MDP Policy, One Resource

Lemma 3.3.2. If the LP solution is supported on a positive drift arm xp, then

RegBwK
T (ControlBudget) ≤ C̃,

where C̃ = O
(
δ−3

drift ln
((

1 − exp
(
−
δ2

drift

8

))−1))
is a constant.

Proof. When the LP solution is supported on a positive drift arm xp, OPTLP = µ
r
xp

because the LP plays it with probability 1. Therefore, the regret is equal to the

expected number of times ControlBudget (Algorithm 1) pulls the null arm. This, in

turn, is equal to the expected number of rounds in which the budget is less than

1.

Define

b0 = 8δ−2
drift ln

 2

1 − exp
(
−
δ2

drift
8

)
 .

Then, we have that for all b ≥ b0,

∞∑
k=b

Pr [Bs+k ∈ [0, 1) | Bs ∈ [b, b + 1)] ≤
∞∑

k=b

exp
−δ2

driftk

8


= exp

−δ2
driftb

8

 1 − exp
−δ2

drift

8

−1

.

where the first inequality follows from Azuma-Hoeffding’s inequality. By our

choice of b0, we have that

∞∑
k=b

Pr [Bs+k ∈ [0, 1) | Bs ∈ [b, b + 1)] ≤
1
2
. (3.6)
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In words, the probability that the budget ever drops below 1 once it exceeds b0

is at most 1
2 . Now, consider the following recursive definition for two disjoint

sequence of indices si and s′i . Let s0 = min{t ≥ 1 : Bt−1 ∈ [0, 1)}, and define

s′i = min{t > si : Bt−1 ≥ b0 or t − 1 = T }

si+1 = min{t > s′i : Bt−1 ∈ [0, 1)}.

In words, s′i denotes the first round after si in which the budget is at least b0 and si+1

denotes the first round after s′i in which the budget is less than 1. Note that Eq. (3.6)

implies that

Pr
[
si is defined | s′i−1 is defined

]
≤

1
2
.

Therefore,

Pr
[
si is defined

]
≤

i∏
j=1

Pr
[
s j is defined | s′j−1 is defined

]
≤

1
2i .

Now, we can upper bound the expected number of rounds in which the budget is
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below 1 as

E

 T∑
t=1

1[Bt−1 < 1]

 = T−1∑
i=0

Pr
[
si is defined

]
E


s′i∑

t=si

1[Bt−1 < 1] | st is defined


≤

T−1∑
t=0

2−iE


s′i∑

t=si

1[Bt−1 < 1] | st is defined


≤

T−1∑
t=0

2−iE
[
s′i − si

]
≤

T−1∑
t=0

2−i 1
δdrift
E

[
Bs′i − Bsi

]
(3.7)

≤

T−1∑
t=0

2−i 1
δdrift

(b0 + 1)

≤ 2
b0 + 1
δdrift

,

where Eq. (3.7) follows because both the null arm and the positive drift arm have

drift at least δdrift. Therefore, we have that

E

 T∑
t=1

1[Bt−1 < 1]

 ≤ C̃,

where

C̃ = O

δ−3
drift ln

 2

1 − exp
(
−
δ2

drift
8

)

 . (3.8)

This completes the proof. ■

Lemma 3.3.3. If the LP solution is supported on the null arm x0 and a negative drift arm

xn, then

RegBwK
T (ControlBudget) ≤ C̃ · E[BT ],

where C̃ = O(δ−1
drift) is a constant.
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Proof. Let p∗ denote the optimal solution to the LP relaxation and note that T p∗x

denotes the expected number of times the LP plays arm x. Since the LP solution

is supported on two arms, both the budget and sum-to-one constraints are tight.

Therefore, we have

D(T p∗) = bLP, (3.9)

where

D =

µ
d
x0 µd

xn

1 1

 , p∗ =

p∗x0

p∗xn

 , bLP =

−B

T

 . (3.10)

Let Nx denote the number of times ControlBudget (Algorithm 1) plays arm x.

Since it plays the null arm x0 and the negative drift arm xn, the sum-to-one con-

straint is tight. However, the budget constraint may not be tight because there

may be leftover budget. Therefore, we have

DN = bLP − b, (3.11)

where

N =

E[Nx0]

E[Nxn]

 , b =

−E[BT ]

0

 . (3.12)

Define

ξ =

ξx0

ξxn

 =
T p∗x0 − E[Nx0]

T p∗xn − E[Nxn]

 .
Subtracting Eq. (3.11) from Eq. (3.9) we have ξ = D−1b, where the LP constraint

matrix D is invertible by our assumption that the drifts are nonzero. Finally, letting
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µr denote the vector of expected rewards, the regret can be expressed as

RegBwK
T (ControlBudget) = ξTµr

≤ |ξTµr|

≤ ∥ξ∥1∥µ
r∥∞

≤ ∥D−1∥1∥b∥1

≤ CδdriftE[BT ],

where Cδdrift = O(δ−1
drift) is a constant. This completes the proof. ■

Lemma 3.3.4. If the LP solution is supported on a positive drift arm xp and a negative

drift arm xn, then

RegBwK
T (ControlBudget) ≤ C̃ ·max{E[BT ],E[Nx0]},

where E[Nx0] denotes the expected number null arm pulls and C̃ = O(δ−1
drift) is a constant.

Proof. Let p∗ denote the optimal solution to the LP relaxation and note that T p∗x

denotes the expected number of times the LP plays arm x. Since the LP solution

is supported on two arms, both the budget and sum-to-one constraints are tight.

Therefore, we have

D(T p∗) = bLP, (3.13)

where

D =

µ
d
xp µd

xn

1 1

 , p∗ =

p∗xp

p∗xn

 , bLP =

−B

T

 . (3.14)
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Let Nx denote the number of times ControlBudget (Algorithm 1) plays arm x.

Since it plays the null arm x0 when the budget is less than 1 and may have leftover

budget, neither the budget nor the sum-to-one constraint are tight. Therefore, we

have

DN = bLP − b, (3.15)

where

N =

E[Nxp]

E[Nxn]

 , b =

−E[BT ]

E[Nx0]

 . (3.16)

Define

ξ =

ξxp

ξxn

 =
T p∗xp − E[Nxp]

T p∗xn − E[Nxn]

 .
Subtracting Eq. (3.15) from Eq. (3.13) we have ξ = D−1b, where the LP constraint

matrix D is invertible by our assumption that the drifts are nonzero. Finally, letting

µr denote the vector of expected rewards, the regret can be expressed as

RegBwK
T (ControlBudget) = ξTµr

≤ |ξTµr|

≤ ∥ξ∥1∥µ
r∥∞

≤ ∥D−1∥1∥b∥1

≤ Cδdrift (E[BT ] + E[Nx0]) ,

where Cδdrift = O(δ−1
drift) is a constant. This completes the proof. ■

Lemma 3.3.5. If the LP solution is supported on a positive drift arm xp and a negative
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drift arm xn, and c ≥ 12
δ2

drift
, then

E[Nx0] ≤ C̃,

where C̃ = O
(
δ−3

drift ln
((

(1 − exp
(
−
δ2

drift

8

))−1))
is a constant.

Proof. Divide the T rounds into two phases: P1 = {1, . . . ,T − exp(3/c)} and P2 =

{1, . . . ,T } \P1. Note that P2 consists of exp(3/c) = O(exp(δ2
drift)) = O(1) rounds, where

the last equality follows because drifts are bounded by 1. Therefore, the expected

number of null arm pulls in this phase is O(1) and it suffices to bound the expected

number of null arm pulls in P1.

Consider the following recursive definition for three disjoint sequences of in-

dices ti, t′i and t′′i . Let t0 = 0, and define

t′i = min{t > ti : Bt−1 ≥ τt or t − 1 = T },

t′′i = min{t > t′i : Bt−1 < τt},

ti+1 = min{t > t′′i : Bt < 1}.

We can bound the expected number of rounds in which the budget is less than
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1 as

E

 T∑
t=1

1[Bt−1 < 1]


=

T−1∑
i=0

Pr [ti exists ]E


t′i∑

t=ti

1[Bt−1 < 1] | ti exists


≤ E


t′0−1∑
t=t0

1[Bt−1 < 1] | t0 exists

︸                                ︷︷                                ︸
(a)

+

T−1∑
i=0

Pr
[
ti+1 exists | t′i , t

′′
i exist

]
E


t′i−1∑
t=ti

1[Bt−1 < 1] | ti exists

︸                                ︷︷                                ︸
(a)

.

In rounds {ti, . . . , t′i − 1}, the algorithm pulls the null and positive drift arms. The

proof of Lemma 3.3.2 shows that the expected number of null arm pulls in these

rounds is at most C̃, where C̃ is defined in Eq. (3.8). Therefore, we can bound the

term (a) in the above inequality by C̃ and we have that

E

 T∑
t=1

1[Bt−1 < 1]

 ≤ C̃

1 + T−1∑
i=0

Pr
[
ti+1 exists | t′i , t

′′
i exist

] . (3.17)

If t′i exists, then Bt′i−1 ≥ τt′i . If t′′i exists, then τt′′i − 1 ≤ Bt′′i −1 < τt′′i because (i) t′′i

is the first round after t′i in which the budget is below the threshold; and (ii) the

drifts are bounded by 1, so it cannot be lower than τt′′i − 1. The algorithm pulls the

negative drift arm xn in the rounds {t′i , . . . , t
′′
i − 1} and the positive drift arm xp in

the rounds {t′′i , . . . , ti+1−1}. Since the drifts are bounded by 1, it takes at least τt′′i −2

rounds for the budget to drop below 1 after repeated pulls of xp. Using this and

the observation that the budget dropping below 1 is contained in the event that
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the total drift in those rounds is nonpositive, we can bound (a) as

Pr
[
ti+1 exists | t′′i , t

′
i exist

]
≤

T∑
q=t′′i +τt′′i

−2

Pr

 q∑
t=t′′i +1

dt ≤ 0


≤

T∑
q=t′′i +τt′′i

−2

exp
(
−

1
4
δ2

drift(τt′′i − 2)
)

≤

T∑
q=t′′i +τt′′i

−2

exp
(
−

1
4
δ2

driftτt′′i

)

=

T∑
q=t′′i +τt′′i

−2

exp
(
−

1
4
δ2

driftc log(T − t′′i )
)

≤

T∑
q=t′′i +τt′′i

−2

(T − t′′i )−3,

where the second inequality follows from the Azuma-Hoeffding inequality ap-

plied to the sequence of drifts sampled from xp and the last inequality follows

because c ≥ 12
δ2

drift
. The summation is over at most T − t′′i terms because there are at

most T − t′′i rounds left after round t′′i . Therefore, we have that

Pr
[
ti+1 exists | t′′i , t

′
i exist

]
≤ (T − t′′i )−2.

Substituting this in Eq. (3.17), we have that

E

 T∑
t=1

1[Bt−1 < 1]

 ≤ C̃

1 + T−1∑
i=0

Pr
[
ti+1 exists | t′i , t

′′
i exist

]
≤ C̃

1 + T−1∑
i=0

(T − t′′i )−2


≤ C̃

1 + ∞∑
i=0

(T − t′′i )−2


≤ C̃

(
1 +

π2

6

)
.
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This completes the proof. ■

Lemma 3.3.6. If the LP solution is supported on two arms, and c ≥ 12
δ2

drift
, then

E[BT ] ≤ C̃,

where C̃ = Õ
((

1 − exp
(
δ2

drift

))−2
+ δ−2

drift

)
is a constant.

Proof. Let Eq denote the event that the negative drift arm xn is pulled consecutively

in exactly the last q rounds, i.e., xt = xn for all t ≥ T − q + 1 and xt ∈ {x0, xp} for

t = T − q (if q , T ). Note that the events (Eq : q = 0, . . . ,T ) are disjoint. Let S q

denote the event that the total drift in the last q pulls of xn is greater than 1
2µ

d
xnq,

i.e.,
∑

t≥T−q+1 dt >
1
2µ

d
xnq. We can upper bound the expected leftover budget by

conditioning on these events as follows.

E[BT ] =
T∑

q=0

Pr[Eq] E[BT | Eq]

≤

T∑
q=0

E[BT | Eq]

=

T∑
q=0

E[BT | Eq, S q]︸           ︷︷           ︸
(a)

Pr[S q | Eq]︸       ︷︷       ︸
(b)

+E[BT | Eq, S c
q]︸           ︷︷           ︸

(c)

Pr[S c
q | Eq]︸       ︷︷       ︸

(d)

.

If q = 0, then the expected leftover budget is trivially at most a constant. We

can bound the four terms for q ≥ 1 as follows:

(a) We have

E[BT | Eq, S q] ≤ c log q + q
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because (i) ControlBudget (Algorithm 1) pulls x0 or xp in round T−q if BT−q−1 <

τT−q = c log q; and (ii) conditioned on the event S q, the total drift in the last q

rounds can be at most q as the drifts are bounded by 1.

(b) We have

Pr[S q | Eq] ≤ exp
(
−

1
16

(µd
xn)2q

)
because (i) the sequence of drifts observed from q pulls of the negative drift

arm xn is a supermartingale difference sequence; and (ii) by the Azuma-

Hoeffding inequality, the probability the sum S q is greater than half its ex-

pected value is at most exp
(
− 1

16 (µd
xn)2q

)
.

(c) We have

E[BT | Eq, S c
q] ≤

(
c log q +

1
2
µd

xnq
)

because (i) ControlBudget (Algorithm 1) pulls x0 or xp in round T−q if BT−q−1 <

τT−q = c log q; and (ii) conditioned on the event S c
q, the total drift in the last q

rounds can be at most 1
2µ

d
xnq.

(d) We have

Pr[S c
q | Eq] ≤ 1

trivially.

Therefore,

E[BT ] ≤
T∑

q=0

(c log q + q) exp
(
−

1
16

(µd
xn)2q

)
︸                                 ︷︷                                 ︸

(e)

+

(
c log q +

1
2
µd

xnq
)

︸               ︷︷               ︸
( f )

.

This summation is a constant in terms of T :
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1. Term (e) is a constant because c log q < q for q large enough and∑∞
q=1 q exp(−aq) converges to exp(a)(1 − exp(a))−2.

2. Term (f) is a constant because this term is negative for q large enough as

µd
xn < 0 and is maximized at q = 2c

|µd
xn |

.

Finally, we can bound the expected leftover budget as

E[BT ] ≤ C̃ = Õ

1 − exp
δ2

drift

16

−2

+
1

δ2
drift

 ,
where the last equality follows when c ≥ 6

δ2
drift

. This completes the proof. ■

3.8 Proofs for Section 3.3.2: MDP Policy, Multiple Resources

Lemma 3.3.9. [Flajolet and Jaillet, 2015, Lemma 14] In each round t, γt ≥ γ∗ =

σmin min{δsupport,δslack}

4m .

Proof. It suffices to show that γ = σmin min{δsupport,δslack}

4m is a feasible solution the Eq. (3.2).

First, we show that p = D−1(b + γst) ≥ 0. For each x ∈ X∗,

eT
x D−1(b + γst) = eT

x D−1b + γeT
x D−1st

= p∗x + γeT
x D−1st

≥ δsupport − γ∥D−1st∥2

≥ δsupport − γ
1

σmin

√
m

≥ 0.
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Second, we show that for any non-binding resource j, (µd, j)T D−1(b+ γst) ≥
δslack

2 :

(µd, j)T D−1(b + γst) =
∑
x∈X

µd, j
x p∗x + γ(µd, j)T D−1st

≥ δslack − γ|(µd, j)T D−1st|

≥ δslack − γ∥(µd, j)T ∥2∥D−1∥2∥st∥2

≥ δslack − γ
1

σmin
m

≥
δslack

2

≥
γ

2
,

where the last inequality follows because σmin, δslack, δsupport < 1. ■

Lemma 3.3.10. If the LP solution does not include the null arm in its support, then

E[Nx0] ≤ C̃,

where C̃ = O
(
m(γ∗)−3 ln

((
(1 − exp

(
−
γ∗2

8

))−1))
is a constant.

Proof. Divide the T rounds into two phases: P1 = {1, . . . ,T − exp(3/c)} and P2 =

{1, . . . ,T } \P1. Note that P2 consists of exp(3/c) = O(exp((γ∗)2)) = O(1) rounds, where

the last equality follows because γ∗ is bounded by 1. Therefore, the expected num-

ber of null arm pulls in this phase is O(1) and it suffices to bound the expected

number of null arm pulls in P1.

We can write the expected number of rounds in which there exists a resource
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whose budget is less than 1 as

E

 T∑
t=1

∑
j∈J

1[Bt−1, j < 1]

 =∑
j∈J

E

 T∑
t=1

1[Bt−1, j < 1]

︸                   ︷︷                   ︸
(a)

.

We can bound term (a) above the same way as in the proof of Lemma 3.3.5 (Sec-

tion 3.7) with δdrift replaced by γ∗. Therefore,

E

 T∑
t=1

∑
j∈J

1[Bt−1, j < 1]

 ≤ mC̃
(
1 +

π2

6

)
,

where C̃ is defined in Eq. (3.8). ■

Lemma 3.3.11. If the LP solution is supported on more than one arm, then for all j ∈ J∗

E[BT, j] ≤ C̃,

where C̃ = Õ
((

1 − exp(γ∗2)
)−2
+ (γ∗)−2

)
is a constant.

Proof. Consider an arbitrary resource j ∈ J∗. Recall the vector st defined in

ControlBudget (Algorithm 2). If i denotes the row corresponding to resource j,

then the ith entry of st, denoted by st(i), is −1 if Bt−1, j < τt and +1 otherwise.

Let Eq denote the event that the st(i) is equal to −1 consecutively in exactly the

last q rounds, i.e., st(i) = −1 for all t ≥ T − q+ 1 and st(i) = +1 for t = T − q (if q , T ).

Note that the events (Eq : q = 0, . . . ,T ) are disjoint. Let S q denote the event that the

total drift for j in the last q rounds is greater than 1
2 (−γ∗)q, i.e.,

∑
t≥T−q+1 dt >

1
2 (−γ∗)q.

We can upper bound the expected leftover budget of resource j by conditioning

on these events as follows.
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E[BT, j] =
T∑

q=0

Pr[Eq] E[BT, j | Eq]

≤

T∑
q=0

E[BT, j | Eq]

=

T∑
q=0

E[BT, j | Eq, S q]︸             ︷︷             ︸
(a)

Pr[S q | Eq]︸       ︷︷       ︸
(b)

+E[BT, j | Eq, S c
q]︸             ︷︷             ︸

(c)

Pr[S c
q | Eq]︸       ︷︷       ︸

(d)

.

If q = 0, then the expected leftover budget is trivially at most a constant. We

can bound the four terms for q ≥ 1 as follows:

(a) We have

E[BT, j | Eq, S q] ≤ c log q + q

because (i) ControlBudget (Algorithm 2) sets st(i) = +1 in round T − q if

BT−q−1, j < τT−q = c log q; and (ii) conditioned on the event S q, the total drift in

the last q rounds can be at most q as the drifts are bounded by 1.

(b) We have

Pr[S q | Eq] ≤ exp
(
−

1
16

(γ∗)2q
)

because (i) the sequence of drifts observed in rounds t ≥ T − q + 1 is a su-

permartingale difference sequence with E[ds, j | dT−q+1, j, . . . , ds−1, j] ≤ −γ∗; and

(ii) by the Azuma-Hoeffding inequality, the probability the sum S q is greater

than half its expected value is at most exp
(
− 1

16 (γ∗)2q
)
.

(c) We have

E[BT, j | Eq, S c
q] ≤

(
c log q +

1
2

(−γ∗)q
)
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because (i) ControlBudget (Algorithm 2) sets st(i) = +1 in round T − q if

BT−q−1, j < τT−q = c log q; and (ii) conditioned on the event S c
q, the total drift in

the last q rounds can be at most 1
2 (−γ∗)q.

(d) We have

Pr[S c
q | Eq] ≤ 1

trivially.

Therefore,

E[BT, j] ≤
T∑

q=0

(c log q + q) exp
(
−

1
16

(γ∗)2q
)

︸                                ︷︷                                ︸
(e)

+

(
c log q +

1
2

(−γ∗)q
)

︸                   ︷︷                   ︸
( f )

.

This summation is a constant in terms of T :

1. Term (e) is a constant because c log q < q for q large enough and∑∞
q=1 q exp(−aq) converges to exp(a)(1 − exp(a))−2.

2. Term (f) is a constant because this term is negative for q large enough and is

maximized at q = 2c
γ∗

.

Finally, we can bound the expected leftover budget as

E[BT, j] ≤ C̃ = Õ

(1 − exp
(
γ∗2

16

))−2

+
1
γ∗2

 ,
where the last equality follows when c ≥ 6

γ∗2
. This completes the proof. ■
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3.9 Proofs for Section 3.4: Learning Algorithm

Lemma 3.4.1. The clean event occurs with probability at least 1 − 5kmT−2.

Proof. It suffices to show that the complement of the clean event occurs with prob-

ability at most 5kmT−2.

For (i) in the definition of the clean event (Definition 3.4.2), first fix an arm

x ∈ X and a round t ≥ k. By taking a union bound over the components of the

outcome vector and using the Azuma-Hoeffding inequality, we have

Pr
[
µo

x < [LCBt(x),UCBt(x)]
]
≤ 2(m + 1) exp

(
−2nt(x)radt(x)2

)
≤ 4m exp

(
−2nt(x)

8 log T
nt(x)

)
≤ 4mT−16.

Now, by taking a union bound over k arms in X and all rounds t ≥ k, we have

Pr
[
∃x ∈ X, ∃t ≥ k s.t. µo

x < [LCBt(x),UCBt(x)]
]
≤ 4kmT−15 ≤ 4kmT−2.

For (ii) in the definition of the clean event (Definition 3.4.2), a similar approach

works. Let S n, j denote the sum of the drifts for resource j ∈ J after n pulls of the
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null arm x0. By the union bound and Azuma-Hoeffding inequality,

Pr
[
∃ j ∈ J s.t. S n, j < w

]
≤

∑
j∈J

exp
(
−

1
4

wµd, j
x0

)
≤ m exp

(
−

1
4

wδdrift

)
≤ m exp

−1
4

1024km2 log T
δ2

driftσ
2
min

δdrift


= m exp

(
−

256km2 log T
δdriftσ

2
min

)
≤ m exp

(
−256km2 log T

)
(3.18)

≤ m exp
(
−256 log T

)
≤ mT−2,

where Eq. (3.18) follows because δdrift ∈ (0, 1] and σmin ∈ (0, 1). This shows that the

probability of the complement of the clean event is at most 4kmT−2+mT−2 ≤ 5kmT−2

and completes the proof. ■

Lemma 3.4.2. If the clean event occurs, then UCBt(OPTLP) − LCBt(OPTLP) ≤ 8m
σmin

radt.

A similar statement is true for OPT−x and OPT− j for all x ∈ X and j ∈ J .

Proof. We will prove the lemma for OPTLP because the other cases are similar.

Simplifying and overloading notation for this proof, we denote the probability

simplex over k dimensions as ∆k, and the vector of expected rewards, the matrix

of expected drifts and the right-hand side of the budget constraints as

r =


µr

1

...

µr
k

 , D =


µd,1

1 . . . µd,1
k

. . .

µd,m
1 . . . µd,m

k

 , b = −
B
T

1.
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We will use r̄ and D̄ to denote the empirical versions of the rewards and drifts. We

will also use adding a scalar to a vector or matrix to denote adding the scalar to

the vector or matrix component-wise. (For example, r̄ + radt denotes adding the

scalar radt to the vector of empirical rewards.) Now, we can write

OPTLP = max
p∈∆k

rT p s.t. Dp ≥ b, (3.19)

UCBt(OPTLP) = max
q∈∆k

(r̄ + radt)T q s.t. (D̄ + radt)q ≥ b

≤ max
q∈∆k

(r + 2radt)T q s.t. (D + 2radt)q ≥ b

≤ 2radt +max
q∈∆k

rT q s.t. Dq ≥ b − 2radt, (3.20)

where the second-last inequality follows because we are conditioning on the clean

event. Therefore, using D′ and b′ to denote the submatrix and subvector corre-

sponding to the binding constraints, p∗ to denote the optimal solution of the LP

in Eq. (3.19), and q∗ to denote the optimal solution of the LP in Eq. (3.20), we have

UCBt(OPTLP) − OPTLP ≤ 2radt + |rT p∗ − rT q∗|

≤ 2radt + |rT (D′)−1b′ − rT (D′)−1(b′ − 2radt)|

≤ 2radt + ∥r∥2∥(D′)−1∥2∥2radt∥2

≤ 2radt + 2mradt
1

σmin

≤
4m
σmin

radt,

where last inequality follows because σmin < 1 ≤ m. Since the LCB is defined by

subtracting radt from the empirical means, we obtain the same upper bound on

OPTLP − LCBt(OPTLP) and using the triangle inequailty completes the proof. ■
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Theorem 3.3. If c ≥ 12
γ∗

, the regret of ExploreThenControlBudget (Algorithm 3) satisfies

RegBwK
T (ExploreThenControlBudget) ≤ C̃ · log T,

where γ∗ (defined in Lemma 3.3.9), C̃′ and C̃ are constants with C̃′ denoting the constant

in Theorem 3.2 and

C̃ = O

 km2

min{δ2
drift, σ

2
min}∆

2
+ k(γ∗)−2 + C̃′

 .
Proof. Since the complement of the clean event occurs with probability at most

O(kmT−2) and contributes O(kmT−1) to the regret, it suffices to bound the regret

conditioned on the clean event. So, condition on the clean event for the rest of the

proof. Phase one contributes at most

O
 km2

min{δ2
drift, σ

2
min}∆

2

 · log T

to the regret by Corollary 3.4.2. Phase two contributes at most

O
(

k
γ∗2

)
log T

to the regret.

Observe that after phase two, radt(x) ≤ γ∗2

2 for all x ∈ X∗. Combining this

with Eqs. (3.2) to (3.5), we have that (γ∗,D−1(b+γ∗st)) is a feasible solution to the op-

timization problem solved by ExploreThenControlBudget (Algorithm 3). Therefore,

(γt, pt) ensure that there is drift of magnitude at least γ∗

8 in the “correct directions”.

As noted in the end of Section 3.3.2, the regret analysis of ControlBudget (Algo-

rithm 2) requires the algorithm to know X∗, J∗, and find a probability vector pt
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that ensures drifts bounded away from zero in the “correct directions”. Therefore,

by Theorem 3.2, phase three contributes at most C̃′ to the regret, where C̃ is the

constant in Theorem 3.2. Combining the contribution from the three phases, we

have that

RegBwK
T (ExploreThenControlBudget) ≤ C̃ · log T,

where γ∗ (defined in Lemma 3.3.9) and C̃ are constants with

C̃ = O
 km2

min{δ2
drift, σ

2
min}∆

2
+ k(γ∗)−2 + C̃′

 .
■

Theorem 3.4. Suppose B
T ≥ δdrift. Consider a BwK instance such that (i) for each arm and

resource, the expected consumption of that resource differs from B
T by at least δdrift; and (ii)

all the other assumptions required by Theorem 3.3 (Section 3.2.3) are also satisfied. Then,

there is an algorithm for BwK whose regret satisfies the same bound as in Theorem 3.3

with the same constant C̃.

Note that BwK is not automatically a special case of our model because of our

assumption that the null arm has strictly positive drift for every resource. Now

we present a reduction from BwK with B
T bounded away from 0 to our model.

We show that our results imply a logarithmic regret bound for BwK under certain

assumptions.

Proof. Reduction. Assume we are given an instance of BwK with B
T ≥ δdrift > 0.

(Existing results on logarithmic regret for BwK also assume the ratio of the initial
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budget to the time horizon is bounded away from 0 [Li et al., 2021a].) We will

reduce the given BwK instance to a problem in our model. The reduction initial-

izes an instance of ExploreThenControlBudget (Algorithm 3) running in a simulated

environment with the same set of arms as in the given BwK instance, plus an ad-

ditional null arm whose drift is equal to δdrift deterministically for each resource.

The reduction will maintain two time counters: ta is the actual number of time

steps that have elapsed in the BwK problem, and ts is the number of time steps

that have elapsed in the simulation environment in which Algorithm 3 is run-

ning. Likewise, there are two vectors that track the remaining budget: Ba is the

remaining budget in the actual BwK problem our reduction is solving, while Bs is

the remaining budget in the simulation environment. These two budget vectors

will always be related by the equation

Bs = Ba − Tδdrift1 + tsδdrift1. (3.21)

In particular, the initial budget of each resource is initialized (at simulated time

ts = 0) to B − Tδdrift.

Each step of the reduction works as follows. We call Algorithm 3 to simulate

one time step in the simulated environment. If Algorithm 3 recommends to pull a

non-null arm x, we pull arm x, increment both of the time counters (ta and ts), and

update the vector of remaining resource amounts, Ba, according to the resources

consumed by arm x. If Algorithm 3 recommends to pull the null arm, we do not

pull any arm, and we leave ta and Ba unchanged; however, we still increment the

simulated time counter ts. Finally, regardless of whether a null or non-null arm
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was pulled, we update Bs to satisfy Eq. (3.21).

Correctness. Since the reduction pulls the same sequence of non-null arms

as Algorithm 3 until the BwK stopping condition is met and the additional pulls

of the null arm in the simulation environment yield zero reward, the total reward

in the actual BwK problem equals the total reward earned in the simulation envi-

ronment at the time when the BwK stopping condition is met and the reduction

ceases running. Since Algorithm 3 maintains the invariant that Bs is a nonnega-

tive vector, Eq. (3.21) ensures that Ba will also remain nonnegative as long as ts ≥ T

must hold. Theorem 3.3 ensures that the total expected reward earned in the sim-

ulation environment and hence, also in the BwK problem itself, is bounded below

by T ·OPTLP − C̃ · log T , where C̃ is the constant in Theorem 3.3 and OPTLP denotes

the optimal value of the LP relaxation (Eq. (3.1)) for the simulation environment.

We would like to show that this implies the regret of the reduction (with re-

spect to the LP relaxation of BwK) is bounded by C̃ · log T . To do so, we must show

that the LP relaxations of the original BwK problem and the simulation environ-

ment have the same optimal value. Let µr
x and µ

d, j
x denote the expected reward

and expected drifts in the actual BwK problem with arm set X, and let µ̂r
x and µ̂

d, j
x

denote the expected reward and drifts in the simulation environment with arm
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set X+ = X ∪ {x0}. The two LP formulations are as follows.

max
p

∑
x∈X

pxµ
r
x

s.t.
∑
x∈X

pxµ
d, j
x ≥ − B

T ∀ j ∈ J ,∑
x∈X

px ≤ 1

px ≥ 0 ∀x ∈ X.

max
p

∑
x∈X

pxµ̂
r
x

s.t.
∑
x∈X

pxµ̂
d, j
x ≥ − B

T − δdrift ∀ j ∈ J ,∑
x∈X+

px = 1

px ≥ 0 ∀x ∈ X+.

The differences between the two LP formulations lie in substituting µ̂ for µ, sub-

stituting X+ for X, and transforming the inequality constraint
∑

x∈X px ≤ 1 into an

equality constraint
∑

x∈X+ px = 1. We know that µr
x = µ̂

r
x for every x ∈ X and µ̂r

x0 = 0.

Furthermore, µ̂d, j
x denotes the expected drift of resource j in the simulation envi-

ronment when arm x is pulled. This can be written as the sum of two terms: drift

µ
d, j
x is the expectation of the (non-positive) quantity added to the jth component

of budget vector Ba when pulling arm x in the actual BwK environment; in addi-

tion to this non-positive drift, there is a deterministic positive drift of δdrift due to

incrementing the simulation time counter ts and recomputing Bs using Eq. (3.21).

Hence, µ̂d, j
x = µ

d, j
x + δdrift for all x ∈ X and j ∈ J . Furthermore, µ̂d, j

x0 = δdrift. Hence,

for any vector p⃗ representing a probability distribution on X+, we have∑
x∈X+

pxµ̂
d, j
x =

∑
x∈X

pxµ̂
d, j
x

 + δdrift. (3.22)

Accordingly, a vector p⃗ satisfies the constraints of the BwK LP relaxation above

if and only if the probability vector on X+ obtained from p⃗ by setting px0 = 1 −∑
x∈X px satisfies the constraints of the second LP relaxation above. This defines

a one-to-one correspondence between the sets of vectors feasible for the two LP

formulations. Furthermore, this one-to-one correspondence preserves the value

83



of the objective function because µ̂r
x = µ

r
x for x ∈ X and µ̂r

x0 = 0. Thus, the optimal

value of the two linear programs is the same. This completes the proof. ■

3.10 Detailed Assumptions about the Null Arm

In any model in which resources can be consumed and/or replenished over time,

one must specify what happens when the budget of one (or more) resources

reaches zero. The original bandits with knapsacks problem assumes than when

this happens, the process of learning and gaining rewards ceases. The key distinc-

tion between that model and ours is that we instead assume the learner is allowed

to remain idle until the supply of every resource becomes positive again, at which

point the learning process recommences. The null arm in our chapter is intended

to represent this option to remain idle and wait for resource replenishment. In

order for these idle periods to have finite length almost surely, a minimal assump-

tion is that when the null arm is pulled, for each resource there is a positive proba-

bility that the supply of the resource increases. We make the stronger assumption

that for each resource, the expected change in supply is positive when the null arm

is pulled. In fact, our results for the MDP setting hold under the following more

general assumption: there exists a probability distribution over arms, such that

when a random arm is sampled from this distribution and pulled, the expected

change in the supply of each resource is positive. In the following, we refer to this

as Assumption PD (for ”positive drift”).
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To see that our results for the MDP setting continue to hold under Assump-

tion PD (i.e., even if one doesn’t assume that the null arm itself is guaranteed to

yield positive expected drift for each resource) simply modify Algorithms 2 and 3

so that whenever they pull the null arm in a time step when the supply of each

resource is at least 1, the modified algorithms instead pull a random arm sampled

from the probability distribution over arms that guarantees positive expected drift

for every resource. As long as the constant δdrift is less than or equal to this positive

expected drift, the modification to the algorithms does not change their analysis.

We believe it’s likely that our learning algorithm (Algorithm 3) could similarly

be adapted to work under Assumption PD, but it would be less straightforward

because the positive-drift distribution over arms would need to be learned.

When Assumption PD is violated, the problem becomes much more similar

to the Bandits with Knapsacks problem. To see why, consider a two-player zero-

sum game in which the row player chooses an arm x, the column player chooses

a resource j, and the payoff is the expected drift of that resource when that arm

is pulled, µd, j
x . Assumption PD is equivalent to the assertion that the value of

the game is positive; the negation of Assumption PD means that the value of the

game is non-positive. By the Minimax Theorem, this means there is a convex

combination of resources (i.e., a mixed strategy for the column player) such that

the weighted-average supply of these resources is guaranteed to experience non-

positive expected drift, no matter which arm is pulled. Either the expected drift is

zero — we prove in the next section (Section 3.10) that regret O(
√

T ) is unavoidable

in this case — or the expected drift is strictly negative, in which case the weighted-
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average resource supply inevitably dwindles to zero no matter which arms the

learner pulls. In either case, the behavior of the model is qualitatively different

when Assumption PD does not hold.

3.11 Regret Bounds for One Arm, One Resource, and Zero Drift

In this section we will consider the case when X = {x0, x}, J = {1}, and x has zero

drift, i.e., µd
x = 0. Since x is the only arm besides the null arm, we assume without

loss of generality that its reward is equal to 1 deterministically. The optimal policy

is to pull x0 when Bt−1 < 1 and x otherwise. We will show that the regret of this

policy is Θ(
√

T ). Therefore, our separation assumption that δdrift = min{|µd, j
x | : x ∈

X, j ∈ J} > 0 is necessary for logarithmic regret bounds.

Theorem 3.5. The regret of the MDP policy is O(
√

T ).

Proof. The optimal solution of the LP relaxation (Eq. (3.1)) is px = 1 and px0 = 0.

Since x0 and x have reward equal to 0 and 1 deterministically, OPTLP = 1.Therefore,

the regret of the MDP policy is equal to the expected number rounds in which the

budget is less than 1. That is,

RegBwK
T = E

 T∑
t=1

1[Bt−1 < 1]

 .
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Since E[dt] = 0 when Bt−1 ≥ 1 and E[dt] = µd
x0 when Bt−1 < 1, we can write

RegBwK
T = E

 T∑
t=1

1[Bt−1 < 1]


=

1
µd

x0

µd
x0E

 T∑
t=1

1[Bt−1 < 1]


=

1
µd

x0

E

 T∑
t=1

µd
x01[Bt−1 < 1] + 01[Bt−1 ≥ 1]


=

1
µd

x0

E

 T∑
t=1

dt


=

1
µd

x0

(E [BT ] − B) .

Since B0 = B, the budget is updated as Bt = Bt−1 + dt and dt ∈ [−1, 1], we have

E
[
B2

t |Bt−1

]
= E

[
B2

t−1 + 2Bt−1dt + d2
t |Bt−1

]
= E

[
B2

t−1|Bt−1

]
+ E [2Bt−1dt|Bt−1] + E

[
d2

t |Bt−1

]
≤ B2

t−1 + E [2Bt−1dt|Bt−1] + 12

= B2
t−1 + 2Bt−1µ

d
x01[Bt−1 < 1] + 1

≤ B2
t−1 + 2µd

x0 + 1

⇒ E
[
B2

T

]
= O(T ).

Using Jensen’s inequality, we have

E [BT ] ≤
√
E

[
B2

T

]
= O(

√
T ).

This completes the proof. ■

Theorem 3.6. If E
[
d2

t |Bt−1

]
≥ σ2 > 0, then the regret of the MDP policy is Ω(

√
T ).
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Proof. Using the proof of Theorem 3.5, it suffices to provide a lower bound on

E [BT ]. Since the budget is updated as Bt = Bt−1 + dt, E [dt|Bt−1] ≥ 0, and E
[
d2

t |Bt−1

]
≥

σ2, we have

E
[
B2

t |Bt−1

]
= E

[
B2

t−1 + 2Bt−1dt + d2
t |Bt−1

]
= E

[
B2

t−1|Bt−1

]
+ E [2Bt−1dt|Bt−1] + E

[
d2

t |Bt−1

]
≥ B2

t−1 + E [2Bt−1dt|Bt−1] + σ2

= B2
t−1 + 2Bt−1E [dt|Bt−1] + σ2

≥ B2
t−1 + σ

2

⇒ E
[
B2

T

]
≥ Ω(T ).

The Cauchy-Schwarz inequality yields that

E
[(

B1/2
T

)2
]1/2

E
[(

B3/2
T

)2
]1/2

≥ E
[
B2

T

]
≥ Ω(T ).

Squaring both sides yields that

E [BT ]E
[
B3

T

]
≥ E

[
B2

T

]2
≥ Ω(T 2).

It suffices to show that E
[
B3

T

]
= O(T 3/2) because this will imply that E [BT ] = Ω(T 1/2).

Since dt ∈ [−1, 1], we have

E
[
B3

t |Bt−1

]
= E

[
B3

t−1 + 3B2
t−1dt + 3Bt−1d2

t + d3
t |Bt−1

]
= B3

t−1 + 3B2
t−1E [dt|Bt−1] + 3Bt−1E

[
d2

t |Bt−1

]
+ E

[
d3

t |Bt−1

]
= B3

t−1 + 3B2
t−1µ

d
x01[Bt−1 < 1] + 3Bt−1E

[
d2

t |Bt−1

]
+ E

[
d3

t |Bt−1

]
≤ B3

t−1 + 3µd
x0 + 3Bt−1 + 1.
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Taking expectation on both sides yields

E
[
B3

t

]
≤ E

[
B3

t−1

]
+ 3E [Bt−1] + O(1)

≤ E
[
B3

t−1

]
+ O(

√
t),

where the last inequality follows from the proof of Theorem 3.5 where we show

that E [Bt] ≤ O(
√

t). Summing both sides over all rounds yields that

E
[
B3

T

]
= O(T 3/2)

and this completes the proof. ■
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CHAPTER 4

ONLINE CONVEX OPTIMIZATION WITH UNBOUNDED MEMORY

In this chapter we focus on a different model of online decision-making,

namely, online convex optimization. Online convex optimization (OCO) is a

widely used framework in online learning. In each round, the learner chooses

a decision in a convex set and an adversary chooses a convex loss function, and

then the learner suffers the loss associated with their current decision. However,

in many applications the learner’s loss depends not only on the current decision

but on the entire history of decisions until that point. The OCO framework and its

existing generalizations do not capture this, and they can only be applied to many

settings of interest after a long series of approximation arguments. They also leave

open the question of whether the dependence on memory is tight because there

are no non-trivial lower bounds. In this chapter we introduce a generalization of

the OCO framework, “Online Convex Optimization with Unbounded Memory”,

that captures long-term dependence on past decisions. We introduce the notion

of p-effective memory capacity, Hp, that quantifies the maximum influence of past

decisions on present losses. We prove an O(
√

HpT ) upper bound on the policy

regret and a matching (worst-case) lower bound. As a special case, we prove the

first non-trivial lower bound for OCO with finite memory [Anava et al., 2015],

which could be of independent interest, and also improve existing upper bounds.

We demonstrate the broad applicability of our framework by using it to derive re-

gret bounds, and to improve and simplify existing regret bound derivations, for a
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variety of online learning problems including online linear control and an online

variant of performative prediction. This chapter is based on joint work with Sarah

Dean and Robert Kleinberg [Kumar et al., 2023].

4.1 Introduction

Numerous applications are characterized by multiple rounds of sequential inter-

actions with an environment, e.g., prediction from expert advice [Littlestone and

Warmuth, 1989, 1994], portoflio selection [Cover, 1991], routing [Awerbuch and

Kleinberg, 2008], etc. One of the most popular frameworks for modelling such se-

quential decision-making problems is online convex optimization (OCO) [Zinke-

vich, 2003]. The OCO framework is as follows. In each round, the learner chooses

a decision in a convex set and an adversary chooses a convex loss function, and

then the learner suffers the loss associated with their current decision. The per-

formance of an algorithm is measured by regret: the difference between the algo-

rithm’s total loss and that of the best fixed decision. We refer the reader to Shalev-

Shwartz [2012], Hazan [2022], Orabona [2019] for surveys on this topic.

However, in many applications the loss of the learner depends not only on the

current decisions but on the entire history of decisions until that point. For ex-

ample, in online linear control [Agarwal et al., 2019b], in each round the learner

chooses a “control policy” (i.e., decision), suffers a loss that is a function of the ac-

tion taken by this policy and the current state of the system, and the system’s state

evolves according to linear dynamics. The current state depends on the entire
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history of actions and, therefore, the current loss depends not only on the current

decision but the entire history of decisions. The OCO framework cannot capture

such long-term dependence of the current loss on the past decisions and neither

can existing generalizations that allow the loss to depend on a constant number

of past decisions [Anava et al., 2015]. Although a series of approximation argu-

ments can be used to apply finite memory generalizations of OCO to the online

linear control problem, there is no OCO framework that captures the complete

long-term dependence of current losses on past decisions. Furthermore, there are

no non-trivial lower bounds for OCO in the memory setting,1 which leaves open

the question whether the dependence on memory is tight.

Contributions. In this chapter we introduce a generalization of the OCO frame-

work, “Online Convex Optimization with Unbounded Memory” (Section 4.2),

that allows the loss in the current round to depend on the entire history of de-

cisions until that point. We introduce the notion of p-effective memory capacity,

Hp, that quantifies the maximum influence of past decisions on present losses.

We prove an O(
√

HpT ) upper bound on the policy regret (Theorem 4.2) and a

matching (worst-case) lower bound (Theorem 4.3). As a special case, we prove the

first non-trivial lower bound for OCO with finite memory (Theorem 4.5), which

could be of independent interest, and also improve existing upper bounds (Theo-

rem 4.4). Our lower bound technique extends existing techniques developed for

memoryless settings. We design novel adversarial loss functions that exploit the

1The trivial lower bound refers to the Ω(
√

T ) lower bound for OCO in the memoryless setting.
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fact that an algorithm cannot overwrite its history. We illustrate the power of our

framework by bringing together the regret analysis of two seemingly disparate

problems under the same umbrella. First, we show how our framework improves

and simplifies existing regret bounds for the online linear control problem [Agar-

wal et al., 2019b] in Theorem 4.8. Second, we show how our framework can be

used to derive regret bounds for an online variant of performative prediction [Per-

domo et al., 2020] in Theorem 4.9. This demonstrates the broad applicability of our

framework for deriving regret bounds for a variety of online learning problems,

particularly those that exhibit long-term dependence of current losses on past de-

cisions.

Related work. The most closely related work to ours is the OCO with finite

memory framework [Anava et al., 2015]. They consider a generalization of the

OCO framework that allows the current loss to depend on a constant number of

past decisions. There have been a number of follow-up works that extend the

framework in a variety of other ways, such as non-stationarity [Zhao et al., 2022],

incorporating switching costs [Shi et al., 2020], etc. However, none of these exist-

ing works go beyond a constant memory length and do not prove a non-trivial

lower bound with a dependence on the memory length. In a different line of

work, Bhatia and Sridharan [2020] consider a much more general online learning

framework that goes beyond a constant memory length, but they only provide

non-constructive upper bounds on regret. In contrast, our OCO with unbounded

memory framework allows the current loss to depend on an unbounded number of
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past decisions, provides constructive upper bounds on regret, and lower bounds

for a broad class of problems that includes OCO with finite memory with a general

memory length m.

A different framework for sequential decision-making is multi-armed ban-

dits [Bubeck and Cesa-Bianchi, 2012, Slivkins, 2019]. Qin et al. [2023] study a

variant of contextual stochastic bandits where the current loss can depend on

a sparse subset of all prior contexts. This setting differs from ours due to the

feedback model, stochasticity, and decision space. Reinforcement learning [Sut-

ton and Barto, 2018] is yet another popular framework for sequential decision-

making that considers very general state-action models of feedback and dynam-

ics. In reinforcement learning one typically measures regret with respect to the

best state-action policy from some policy class, rather than the best fixed decision

as in online learning and OCO. In the special case of linear control, policies can be

reformulated as decisions while preserving convexity; we discuss this application

in Section 4.4. Considering the general framework is an active area of research.

We defer discussion of related work for specific applications to Section 4.4.

4.2 Framework

We begin with some motivation for the formalism used in our framework (Sec-

tion 4.2.1). Many real-world applications involve controlling a physical dynamical
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system, for example, variable-speed wind turbines in wind energy electric power

production [Boukhezzar and Siguerdidjane, 2010]. The typical solution for these

problems has been to model them as offline control problems with linear time-

invariant dynamics and use classical methods such as LQR and LQG [Boukhezzar

and Siguerdidjane, 2010]. Instead of optimizing over the space of control inputs,

the typical feedback control approach optimizes over the space of controllers, i.e.,

policies that choose a control input as a function of the system state. The stan-

dard controllers considered in the literature are linear controllers. Even when the

losses are convex in the state and input, they are nonconvex in the linear con-

troller. In the special case of quadratic losses in terms of the state and input, there

is a closed-form solution for the optimal solution using the algebraic Riccati equa-

tions [Lancaster and Rodman, 1995]. But this does not hold for general convex

losses resulting in convex reparameterizations such as Youla [Youla et al., 1976,

Kučera, 1975] and SLS [Wang et al., 2019, Anderson et al., 2019]. The resulting

parameterization represents an infinite dimensional system response and is char-

acterized by a sequence of matrices. Recent work has studied an online approach

for some of these control theory problems, where a sequence of controllers is cho-

sen adaptively rather than choosing one offline [Abbasi-Yadkori and Szepesvári,

2011, Dean et al., 2018, Simchowitz and Foster, 2020, Agarwal et al., 2019b].

The takeaway from the above is that there are online learning problems in

which (i) the current loss depends on the entire history of decisions; and (ii) the

decision space can be more complicated than just a subset of Rd, e.g., it can be an

unbounded sequence of matrices. This motivates us to model the decision space
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as a Hilbert space and the history space as a Banach space in the formal problem

setup below, and this subsumes the special cases of OCO and OCO with finite

memory. This formalism not only lets us consider a wide range of spaces, such

as Rd, unbounded sequences of matrices, etc., but also lets us define appropriate

norms on these spaces. This latter feature is crucial for deriving strong regret

bounds for some applications such as online linear control. For this problem we

derive improved regret bounds (Theorem 4.8) by defining weighted norms on the

decision and history spaces, where the weights are chosen to leverage the problem

structure.

Notation. We use ∥ · ∥U to denote the norm associated with a space U. The op-

erator norm for a linear operator L from space U → V is defined as ∥L∥U→V =

maxu:∥u∥U≤1 ∥Lu∥V. For convenience, sometimes we simply use ∥ · ∥when the mean-

ing is clear from the context. For a finite-dimensional matrix we use ∥ · ∥F and

∥ · ∥2 to denote its Frobenius norm and operator norm respectively. In this chapter

we use O(·) to hide absolute constants only; we clarify inline when we hide other

terms as in Section 4.5.

4.2.1 Setup

Let the decision space X be a closed and convex subset of a Hilbert spaceW with

norm ∥ · ∥X and the history space H be a Banach space with norm ∥ · ∥H . Let
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A : H → H and B : W → H be linear operators. The game between the learner

and an oblivious adversary proceeds as follows. Let T denote the time horizon

and ft : H → R be loss functions chosen by the adversary. The initial history is

h0 = 0. In each round t ∈ [T ], the learner chooses xt ∈ X, the history is updated

to ht = Aht−1 + Bxt, and the learner suffers loss ft(ht). An instance of an online

convex optimization with unbounded memory problem is specified by the tuple

(X,H , A, B).

We use the notion of policy regret [Dekel et al., 2012] as the performance mea-

sure in our framework. The policy regret of a learner is the difference between its

total loss and the total loss of a strategy that plays the best fixed decision in every

round. The history after round t for a strategy that chooses x in every round is

described by ht =
∑t−1

k=0 AkBx, which motivates the following definition.

Definition 4.2.1. Given ft : H → R, the function f̃t : X → R is defined as

f̃t(x) = ft(
t−1∑
k=0

AkBx).

Definition 4.2.2 (Policy Regret). The policy regret of an algorithmA is defined as

RegOCO−UM
T (A) =

T∑
t=1

ft(ht) −min
x∈X

T∑
t=1

f̃t(x).

In many motivating examples such as online linear control (Section 4.4.1), the

history at the end of a round is a sequence of linear transformations of past deci-

sions. The following definition captures this formally and we leverage this struc-

ture to prove stronger regret bounds (Theorem 4.2).
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Definition 4.2.3 (Linear Sequence Dynamics). Consider an online convex opti-

mization with unbounded memory problem specified by (X,H , A, B). Let (ξk)∞k=0 be

a sequence of nonnegative real numbers satisfying ξ0 = 1. We say that (X,H , A, B)

follows linear sequence dynamics with the ξ-weighted p-norm for p ≥ 1 if

1. H is the ξ-weighted ℓp-direct sum of a finite or countably infinite number of

copies ofW: every element y ∈ H is a sequence y = (yi)i∈I, where I = N or

I = {0, . . . , n} for some n ∈ N, and ∥y∥H =
(∑

i∈I(ξi∥yi∥)p)1/p < ∞.

2. We have A(y0, y1, . . . ) = (0, A0y0, A1y1, . . . ), where Ai : W → W are linear

operators.

3. The operator B satisfies B(x) = (x, 0, . . . ).

Note that since the norm on H depends on the weights ξ, the operator norm

∥Ak∥ also depends on ξ. If the weights are all equal to 1, then we simply say p-norm

instead of ξ-weighted p-norm.

Formulation as an online decision-making problem. Before continuing, we

take a brief detour to show that the problem defined above can be formulated

in the online decision-making framework (Definition 2.1.6), which is defined by

the tuple (X,Ψ,L,G,Φ, ϕ,Π,ENV).

• Actions X are the same as above.

• States Ψ = H .
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• Initial state ψ0 = h0.

• Dynamics function gt = g for all rounds, where

g(ψt−1, xt) = g(ht−1, xt) = Aht−1 + Bxt.

Here, G consists of a single function defined by the previous equation.

• Loss function lt = ft for all rounds. Here, L is the set of functions from

H → R.

• Feedback spaces Φl = L and Φg = G.

• Feedback functions ϕl(l, ψt) = l and ϕg(g, ψt−1, xt) = g.

• Decisions Π are constant functions taking values in the set of point-mass

distributions over X.

• The environment ENV is an oblivious adversary.

We remark that decisions correspond to actions in the above formalism. However,

our OCO with unbounded memory framework is rich enough to model applica-

tions where decisions are more general policies, such as online linear control (Sec-

tion 4.4.1). For simplicity, in the rest of this chapter we will use the formalism and

notation defined previously instead of the one above.

4.2.2 Assumptions

We make the following assumptions about the feedback model and the loss func-

tions.
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A1 The learner knows the operators A and B, and observes ft at the end of each

round t.

A2 The operator norm of B is at most 1, i.e., ∥B∥ ≤ 1.

A3 The functions ft are convex.

A4 The functions ft are L-Lipschitz continuous: ∀ h, h̃ ∈ H and t ∈ [T ], we have

| ft(h) − ft(h̃)| ≤ L∥h − h̃∥H .

Regarding Assumption A1, our results easily extend to the case where instead

of observing ft, the learner receives a gradient∇ f̃t(xt) from a gradient oracle, which

can be implemented using knowledge of ft and the dynamics A and B. Handling

the cases when the operators A and B are unknown and/or the learner observes

bandit feedback (i.e., only ft(ht)) are important problems and we leave them as

future work. Note that our assumption that A and B are known is no more re-

strictive than in the existing literature on OCO with finite memory [Anava et al.,

2015] where it is assumed that the learner knows the constant memory length. In

fact, our assumption is more general because our framework not only captures

constant memory length as a special case but allows for richer dynamics as we il-

lustrate in Section 4.4. Assumption A2 is made for convenience, and it amounts to

a rescaling of the problem. Assumption A3 can be replaced by the weaker assump-

tion that f̃t are convex (similar to the literature on OCO with finite memory [Anava

et al., 2015]) and this is what we use in the rest of the chapter.

Assumptions A1 and A4 imply that f̃t are L̃-Lipschitz continuous for the fol-

lowing L̃.
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Theorem 4.1. Consider an online convex optimization with unbounded memory problem

specified by (X,H , A, B). If ft is L-Lipschitz continuous,

L̃ ≤ L
∞∑

k=0

∥Ak∥.

If (X,H , A, B) follows linear sequence dynamics with the ξ-weighted p-norm for p ≥ 1,

then

L̃ ≤ L

 ∞∑
k=0

∥Ak∥p


1
p

.

The proof follows from the definitions of f̃t and ∥ · ∥H , and we defer it to Sec-

tion 4.9. The above bound is tighter than similar results in the literature on OCO

with finite memory and online linear control. This theorem is a key ingredient,

amongst others, in improving existing upper bounds on regret for OCO with finite

memory (Theorem 4.4) and for online linear control (Theorem 4.8). Before present-

ing our final assumption we introduce the notion of p-effective memory capacity

that quantifies the maximum influence of past decisions on present losses.

Definition 4.2.4 (p-Effective Memory Capacity). Consider an online convex opti-

mization with unbounded memory problem specified by (X,H , A, B). For p ≥ 1,

the p-effective memory capacity is defined as

Hp(X,H , A, B) =

 ∞∑
k=0

kp∥Ak∥p


1
p

. (4.1)

When the meaning is clear from the context we simply use Hp instead. The

p-effective memory capacity is an upper bound on the difference in histories for

two sequences of decisions whose difference grows at most linearly with time. To
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see this, consider two sequences of decisions, (xk) and (x̃k), whose elements differ

by no more than k at time k: ∥xk − x̃k∥ ≤ k. Then the histories generated by the

two sequences have difference between bounded as ∥h − h̃∥ = ∥
∑

k AkB(xk − x̃k)∥ ≤∑
k k∥AkB∥ ≤

∑
k k∥Ak∥ = H1, where the last inequality follows from Assumption A2.

A similar bound holds with Hp instead when (X,H , A, B) follows linear sequence

dynamics with the ξ-weighted p-norm.

A5 The 1-effective memory capacity is finite, i.e., H1 < ∞.

Since Hp is decreasing in p, H1 < ∞ implies Hp < ∞ for all p ≥ 1. For the case

of linear sequence dynamics with the ξ-weighted p-norm it suffices to make the

weaker assumption that Hp < ∞. However, for simplicity of exposition, we assume

that H1 < ∞.

4.2.3 Special Cases

OCO with Finite Memory. Consider the OCO with finite memory prob-

lem with constant memory length m. It can be specified in our framework

by (X,H , Afinite,m, Bfinite,m), where H is the ℓ2-direct sum of m copies of X,

Afinite,m(x[m], . . . , x[1]) = (0, x[m], . . . , x[2]), and Bfinite,m(x) = (x, 0, . . . , 0). Note that

(X,H , Afinite,m, Bfinite,m) follows linear sequence dynamics with the 2-norm. Our

framework can even model an extension where the problem follows linear se-
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quence dynamics with the p-norm for p ≥ 1 by simply defining H to be the ℓp-

direct sum of m copies of X.

OCO with ρ-discounted Infinite Memory. Our framework can also model OCO

with infinite memory problems that are not modelled by existing OCO frame-

works. Let ρ ∈ (0, 1) be the discount factor and p ≥ 1. An OCO with ρ-discounted

infinite memory problem is specified by (X,H , Ainfinite,ρ, Binfinite,ρ), where H is the

ℓp-direct sum of countably many copies ofX, Ainfinite,ρ((y0, y1, . . . )) = (0, ρy0, ρy1, . . . ),

and Binfinite,ρ(x) = (x, 0, . . . ). Note that (X,H , Ainfinite,ρ, Binfinite,ρ) follows linear se-

quence dynamics with the p-norm.

4.3 Regret Analysis

We present two algorithms for choosing the decisions xt. Algorithm 4 uses follow-

the-regularized-leader (FTRL) [Shalev-Shwartz and Singer, 2006, Abernethy et al.,

2008] on the loss functions f̃t. We defer additional discussion of this algorithm to

later in the chapter: we discuss how to implement it efficiently in Section 4.5 and

present simple simulation experiments in Section 4.7. Algorithm 5, which we only

present in Section 4.6, combines FTRL with a mini-batching approach [Dekel et al.,

2012, Altschuler and Talwar, 2018, Chen et al., 2020] to additionally guarantee that

the decisions switch at most O(T L̃/LH1) times. We defer the proofs of the following

upper and lower bounds to Sections 4.10 and 4.11 respectively.
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xt xt−1 xt−2 xt−3 . . .

Finite memory
of size 1, i.e.,
OCO.

A = 0 H2 = 1

Finite memory
of size m.

A =


I

. . .

I

 H2 = m
3
2

ρ-discounted
infinite mem-
ory.

A =


ρ

ρ
. . .

 H2 = (1 − ρ2)−
3
2

General case. A : H → H H2 =

√∑t−1
k=0 k2∥Ak∥2

Figure 4.1: An illustration of what the dependence on past decisions looks like,
the operator A, and the 2-effective memory capacity for some special cases and
the general case. The bar chart is a cartoon illustration of the dependence on past
decisions. For example, for OCO with finite memory of size m in the second row
(for m = 3), the current loss depends on the past three decisions; for OCO with ρ-
discounted infinite memory in the third row, the current loss depends on all past
decisions with geometric decay of ρ; etc.

Theorem 4.2. Consider an online convex optimization with unbounded memory problem

specified by (X,H , A, B). Let the regularizer R : X → R be α-strongly-convex and satisfy

|R(x) − R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 4 with step-size η satisfies

RegOCO−UM
T (FTRL) ≤

D
η
+ η

T L̃2

α
+ η

T LL̃H1

α
.

If η =
√

αD
T L̃(LH1+L̃) , then

RegOCO−UM
T (FTRL) ≤ O

√D
α

T LL̃H1

 .
When (X,H , A, B) follows linear sequence dynamics with the ξ-weighted p-norm, then all

of the above hold with Hp instead of H1.
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Algorithm 4: FTRL
Input : Time horizon T , step size η, α-strongly-convex regularizer

R : X → R.
1 Initialize history h0 = 0.
2 for t = 1, 2, . . . ,T do
3 Learner chooses xt ∈ arg minx∈X

∑t−1
s=1 f̃s(x) + R(x)

η
.

4 Set ht = Aht−1 + Bxt.
5 Learner suffers loss ft(ht) and observes ft.
6 end

The proof of this theorem involves writing the regret as
∑

t ft(ht) − f̃t(xt) +∑
t f̃t(xt)− f̃t(x∗), and bounding the first term using the p-effective memory capacity

and the second term using (standard) FTRL for OCO without memory. We defer

the full proof to Section 4.10. The following lower bound shows that this is tight

in the worst-case.

Theorem 4.3. There exists an instance of the online convex optimization with unbounded

memory problem, (X,H , A, B), that follows linear sequence dynamics with the ξ-weighted

p-norm and there exist L-Lipschitz continuous loss functions { ft : H → R}Tt=1 such that

the regret of any algorithmA satisfies

RegOCO−UM
T (A) ≥ Ω

(√
T LL̃Hp

)
.

The proof of this theorem follows from our lower bound for the special case of

OCO with finite memory (Theorem 4.5), which we discuss in detail below. How-

ever, as we show in Section 4.11, the lower bound holds for a much broader class

of problems.

105



Specialization to OCO with finite memory. Now we show how our bounds

specialize to the special case of OCO with finite memory (Section 4.2.3).

Theorem 4.4. Consider an online convex optimization with finite memory problem with

constant memory length m specified by (X,H = Xm, Afinite,m, Bfinite,m). Let the regularizer

R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 4

with step-size η =
√

αD

T L̃(Lm
3
2 +L̃)

satisfies

RegOCO−UM
T (FTRL) ≤ O

√D
α

T LL̃m
3
2

 ≤ O

m √
D
α

T L2

 .
This follows from using the definition of Afinite,m to bound L̃ and H2 in Theo-

rem 4.2. This improves existing results [Anava et al., 2015] by a factor of m1/4. Our

bound depends on the Lipschitz continuity constants as
√

LL̃ whereas existing

bounds depend as L̃, and L̃ can be as large as
√

mL (Theorem 4.1). We defer the

full proof to Section 4.10 and present a detailed comparison with existing results

after the proof. (See this paragraph.)2 The following lower bound shows that this

is tight in the worst-case.

Theorem 4.5. There exists an instance of the online convex optimization with finite mem-

ory problem with constant memory length m, (X,H = Xm, Afinite,m, Bfinite,m), and there exist

L-Lipschitz continuous loss functions { ft : H → R}Tt=1 such that the regret of any algo-

rithmA satisfies

RegOCO−UM
T (A) ≥ Ω

(
m
√

T L2
)
.

2A similar bound was independently obtained by Zhao et al. [2022, Theorem 20, Appendix B.8].
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To the best of our knowledge, this is the first non-trivial lower bound for OCO

with finite memory with an explicit dependence on the memory length m. Zhao

et al. [2022] show a lower bound on an OCO with finite memory problem with

memory size 2. They do so by constructing loss functions whose Lipschitz constant

depends on m. Theorem 4.5 is the first lower bound for OCO with finite mem-

ory with memory size m for general m and Lipschitz constant independent of m. Our

construction involves three main steps, the first two of which are loosely based

on Altschuler and Talwar [2018]. First, divide time into N = T/m blocks of size m.

(For simplicity, assume T is a multiple of m.) Second, sample a random sign ϵn for

each block n ∈ [N]. Third, for t > m choose

ft(ht) = ϵ⌈ t
m ⌉︸︷︷︸

(a)

Lm−
1
2︸︷︷︸

(b)

(
xt−m+1 + · · · + xm⌊ t

m ⌋+1

)︸                       ︷︷                       ︸
(c)

,

where term (a) is the random sign ϵn sampled for the block n = ⌈t/m⌉ that t belongs

to, term (b) is a scaling factor chosen while respecting the Lipschitz continuity

constraint, and term (c) is a sum over a subset of past decisions. Two important

features of this construction are: (i) a random sign is sampled for each block rather

than each round; and (ii) the loss in round t depends on the history of decisions

until and including the first round of the block that t belongs to. These exploit the

fact that an algorithm cannot overwrite its history and penalize it for its past deci-

sions even after it observes the random sign ϵn for the current block. (See Fig. 4.2

for an illustration.) Existing lower bound proofs for OCO sample a random sign

in each round and choose ft(xt) ∝ ϵtxt. A first attempt at extending this for the

OCO with finite memory setting would be to choose ft(ht) ∝ ϵt
∑m−1

k=0 xt−k. However,
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in constrast to our approach, this does not exploit the fact that an algorithm cannot

overwrite its history and does not suffice for obtaining a matching lower bound.

Timex1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ϵ1 ϵ2 ϵ3 ϵ4

f4(h4) = ϵ2 3−
1
2 (x2 + x3 + x4)

f5(h5) = ϵ2 3−
1
2 (x3 + x4)

f6(h6) = ϵ2 3−
1
2 (x4)

T = 12,m = 3, L = 1. Resample every m rounds.

Figure 4.2: An illustration of the loss functions ft for the OCO with finite memory
lower bound. The teal and orange shading indicate whether or not a decision
was used to construct the loss function in a round. For example, in round 5, the
decisions x3 and x4 are shaded teal because they are used to construct the loss
function f5. However, the decision x5 is shaded orange because it is not used to
construct f5.

Specialization to OCO with ρ-discounted infinite memory. Now we show how

our bounds specialize to the special case of OCO with ρ-discounted infinite mem-

ory (Section 4.2.3). For simplicity, we consider the case when the problem follows

linear sequence dynamics with the 2-norm instead of a general p-norm.

Theorem 4.6. Consider an online convex optimization with ρ-discounted infinite mem-

ory problem (X,H , Ainfinite,ρ, Binfinite). Suppose that the problem follows linear sequence

dynamics with the 2-norm. Let the regularizer R : X → R be α-strongly-convex and

satisfy |R(x) − R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 4 with step-size η satisfies

RegOCO−UM
T (FTRL) ≤ O

√D
α

T LL̃(1 − ρ2)−
3
2

 ≤ O

√D
α

T L2(1 − ρ)−2

 .
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Theorem 4.7. Let ρ ∈ [ 1
2 , 1). There exists an instance of the online convex optimization

with ρ-discounted infinite memory problem, (X,H , Ainfinite,ρ, Binfinite), that follows linear

sequence dynamics with the 2-norm and there exist L-Lipschitz continuous loss functions

{ ft : H → R}Tt=1 such that the regret of any algorithmA satisfies

RegOCO−UM
T (A) ≥ Ω

( √
T L2(1 − ρ)−2

)
.

Comparison of upper bound with prior work. The algorithmic ideas and anal-

ysis for our regret upper bound are influenced by Anava et al. [2015]. However,

an important innovation in our work is the use of weighted norms in the case of

linear sequence dynamics. This is a simple but powerful way of encoding prior

knowledge about a problem, and allows us to derive non-trivial regret bounds in

the case of unbounded-length histories. The technical complications that arise are

captured in bounding the relevant quantities of interest, e.g., the Lipschitz con-

stant L̃, the operator norm ∥Ak∥, etc. Furthermore, using weighted norms even

leads to improved regret bounds for some applications. Indeed, consider the ap-

plication to online linear control with adversarial disturbances (Section 4.4.1). Our

framework and upper bound applied to this problem (Theorem 4.8) improve upon

the existing upper bound, which used a finite memory approximation. See Lem-

mas 4.12.2 and 4.12.6 for an illustration of the technical details involved when

using weighted norms.
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4.4 Applications

In this section we apply our framework to online linear control (Section 4.4.1) and

online performative prediction (Section 4.4.2). We defer expanded details and

proofs to Sections 4.12 and 4.13 respectively.

4.4.1 Online Linear Control

Background. Online linear control (OLC) is the problem of controlling a sys-

tem with linear dynamics, adversarial disturbances, and adversarial and convex

losses. It combines aspects from control theory and online learning. We refer the

reader to Agarwal et al. [2019b] for more details. Here, we introduce the basic

mathematical setup of the problem.

Let S ⊆ Rds and U ⊆ Rdu denote the state and control spaces. Let st and ut

denote the state and control at time t with s1 being the inital state. The system

evolves according to the linear dynamics

st+1 = Fst +Gut + wt,

where F ∈ Rds×ds ,G ∈ Rds×du are matrices satisfying ∥F∥2, ∥G∥2 ≤ κ and wt ∈ R
ds is an

adversarially chosen disturbance with ∥wt∥2 ≤ W. Without loss of generality, we

assume that κ,W ≥ 1, ds = du = d, and also define w0 = s1. For t ∈ {1, . . . ,T }, let

ct : S ×U → [0, 1] be convex loss functions chosen by an oblivous adversary. The
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functions ct satisfy the following Lipschitz condition:

∥s∥2, ∥u∥2 ≤ DX ⇒ ∥∇sct(s, u)∥, ∥∇uct(s, u)∥ ≤ L0DX.

The goal in online linear control is to choose a sequence of policies that yield a

sequence of controls ut to minimize the regret

RegOLC
T (ALG) =

T∑
t=1

ct(st, ut) −min
π∗∈Π

T∑
t=1

ct(sπ
∗

t , u
π∗

t ),

where st evolves according to linear dynamics stated above,Π denotes a controller

class, and sπ
∗

t , c
π∗

t denote the state and control at time t when the controls are chosen

according to π∗.

A very simple controller class is constant input, i.e., Π = {πu : π(s) = u ∈

U}. In this case, the history ht can be represented by the finite-dimensional state

st, and the operators can be set to A = F and B = G
∥G∥ . However, like previous

work [Agarwal et al., 2019b] we focus on the class of (κ, ρ)-strongly stable linear

controllers

K = {K ∈ Rd×d : F −GK = HLH−1 s.t. ∥K∥2, ∥H∥2, ∥H−1∥2 ≤ κ and ∥L∥2 = ρ < 1}.

Given a controller K ∈ K , the inputs are chosen as linear functions of the cur-

rent state, i.e., ut = −Kst. Unfortunately, parameterizing ut directly with a linear

controller as ut = −Kst leads to a non-convex problem because st is a non-linear

function of K, e.g., if disturbances are 0, then st = (F − GK)t−1s0. An alternative

parameterization is the disturbance-action controller (DAC).
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Definition 4.4.1. Let K ∈ K be fixed. The class of disturbance-action controllers

(DACs) is defined as

MK = {(K,M) : M = (M[s])∞s=1 s.t. M[s] ∈ Rd×d and ∥M[s]∥2 ≤ κ
4ρs}.

The control in round k is chosen as

uk = −Ksk +

k∑
j=1

M[ j]wk− j.

The class of such DACs has two important properties. First, it acts on the entire

history of past disturbances. Consequently, given an arbitrary K ∈ K , every K∗ ∈

K can be expressed as a DAC (K,M) ∈ MK with M = (M[1], . . . ,M[T ], 0, . . . ) [Agar-

wal et al., 2019a, Section 16.5]. That is, K ⊆ MK and it suffices to compute regret

against MK instead of K . For the rest of this chapter we fix K ∈ K and denote

F̃ = F − GK. Second, suppose Mt = (M[s]
t )∞s=1 is the parameter chosen in round t

and the control ut is chosen according to the DAC (K,Mt). Then, st and ut are lin-

ear functions of the parameters, which implies that ct is convex in the parameters.

(See the next paragraph on “Formulation as OCO with Unbounded Memory” for

a formula.) A similar parameterization was first considered for online linear con-

trol by Agarwal et al. [2019b] and is based on similar ideas in control theory, e.g.,

Youla [Youla et al., 1976, Kučera, 1975] and SLS [Wang et al., 2019, Anderson et al.,

2019].

Formulation as OCO with Unbounded Memory. Now we formulate the online

linear control problem in our framework by defining the decision space X, the
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history space H , and the linear operators A : H → H and B : W → H . Then,

we define the functions ft : H → R in terms of ct and finally, prove an upper

bound on the policy regret. For notational convenience, let (M[s]) and (Yk) denote

the sequences (M[1],M[2], . . . ) and (Y0,Y1, . . . ) respectively.

Recall that we fix K ∈ K to be an arbitrary (κ, ρ)-strongly stable linear controller

and consider the disturbance-action controller policy classMK (Definition 4.4.1).

For the rest of this chapter let F̃ = F − GK. The first step is a change of variables

with respect to the control inputs from linear controllers to DACs and the second

is a corresponding change of variables for the state. Define the decision space X

as

X = {M = (M[s]) : M[s] ∈ Rd×d, ∥M[s]∥2 ≤ κ
4ρs} (4.2)

with

∥M∥X =

√√
∞∑
j=1

ρ− j∥M[ j]∥2F . (4.3)

Define the history space H to be the set consisting of sequences h = (Yk), where

Y0 ∈ X and Yk = F̃k−1GXk for Xk ∈ X, k ≥ 1 with

∥h∥H =

√√
∞∑

k=0

ξ2
k∥Yk∥

2
X
, (4.4)

where the weights (ξk) are nonnegative real numbers defined as

ξ = (1, 1, 1, ρ−
1
2 , ρ−1, ρ−

3
2 , . . . ). (4.5)

Define the linear operators A : H → H and B :W→H as

A((Y0,Y1, . . . )) = (0,GY0, F̃Y1, F̃Y2, . . . ) and B(M) = (M, 0, 0, . . . ).
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Note that the problem follows linear sequence dynamics with the ξ-weighted 2-

norm (Definition 4.2.3), where ξ is defined above in Eq. (4.5). The weights in the

weighted norms on X and H increase exponentially. However, the norms ∥M[s]∥2F

and ∥F̃k−1G∥2F decrease exponentially as well: by definition of M[s] in Eq. (4.3) and

the assumption on F̃ = F − GK for K ∈ K . Leveraging this exponential decrease

in ∥M[s]∥2F and ∥F̃k−1G∥2F to define exponentially increasing weights turns out to

be crucial for deriving our regret bounds that are stronger than existing results.

Furthermore, the choice to have ξp = 1 for p ∈ {1, 2} in addition to p = 0 (as

required by Definition 4.2.3) might seem like a small detail, but this also turns out

to be crucial for avoiding unnecessary factors of ρ−1 in the regret bounds.

Recall that the loss functions in the online linear control problem are ct(st, ut),

where st and ut are the state and control at round t. Now we will show how to

construct the functions ft : H → R that correspond to ct(st, ut). By definition, given

a sequence of decisions (M1, . . . ,Mt), the history at the end of round t is given by

ht = (Mt,GMt−1, F̃GMt−2, . . . , F̃ t−2GM0, 0, . . . ).

A simple inductive argument shows that the state and control in round t can

be written as

st = F̃ t−1s1 +

t−1∑
k=1

k∑
j=1

F̃ t−k−1GM[ j]
k wk− j + wt−1, (4.6)

ut = −Kst +

t∑
j=1

M[ j]
t wt− j. (4.7)

Define the functions ft : H → R by ft(h) = ct(s, u), where s and u are the state and

control determined by the history as above. Note that ft is parameterized by the
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past disturbances. Since the state and control are linear functions of the history

and ct is convex, this implies that ft is convex.

With the above formulation and the fact that the class of disturbance-action

controllers is a superset of the class of (κ, ρ)-strongly-stable linear controllers, we

have that the policy regret for the online linear control problem is at most

RegOLC
T (ALG) =

T∑
t=1

ft(ht) −min
M∈X

T∑
t=1

f̃t(M).

This completes the specification of the online convex optimization with un-

bounded memory problem, (X,H , A, B), corresponding to the online linear control

problem. Using Algorithm 4 and Theorem 4.2 we can upper bound the above by

RegOLC
T (FTRL) = O

√D
α

T LL̃H2

 ,
where L is the Lipschitz constant of ft, L̃ is the Lipschitz constant of f̃t, H2 is the 2-

effective memory capacity, and D = maxx,x̃∈X |R(x) − R(x̃)| for an α-strongly-convex

regularizer R : X → R. Next, we bound these quantities in terms of the prob-

lem parameters of the online linear control problem. We use O(·) to hide absolute

constants. The following is our main result for online linear control and it im-

proves existing results [Agarwal et al., 2019b] by a factor of O(d log(T )3.5κ5(1−ρ)−1).

We present a detailed comparison after the proofs in Section 4.12. (See this para-

graph.)

Theorem 4.8. Consider the online linear control problem as defined in Section 4.4.1.

Suppose the decisions in round t are chosen using Algorithm 4. Then, the upper bound on
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the policy regret is

RegOLC
T (FTRL) = O

(
L0W2

√
Td

1
2 κ17(1 − ρ)−4.5

)
. (4.8)

Comparison with prior and concurrent work. Existing works solve OLC (and

its extensions) by making multiple finite memory approximations. First, they for-

mulate the problem as OCO with finite memory. This requires bounding numer-

ous error terms because the problem is inherently an OCO with unbounded mem-

ory problem. We bypass these error analysis steps entirely because the problem

fits into our framework naturally. Second, existing works use the parameteriza-

tion from Agarwal et al. [2019b] that only acts on a fixed, constant number of past

disturbances. In particular, existing works use a “truncated” DAC policy that is a

sequence of d × d matrices of length 2κ4(1 − ρ)−1 log T . Our DAC policy acts on the

entire history of disturbances and is a sequence of d × d matrices of unbounded

length. Yet, we capture the dimension of this infinite-dimensional space in a way

that still improves the overall bound, including completely eliminating the depen-

dence on log T , and improving the dependence on d, κ, and (1 − ρ). This improve-

ment comes from our novel use of weighted norms on the history and decision

spaces. These norms allow us to give tighter bounds on the relevant quantities in

the regret upper bound, e.g., ∥Ak∥ (Lemma 4.12.2) and L̃ (Lemma 4.12.6).

In complementary concurrent work, Lin et al. [2023] focus on a more general

online control problem. They improve regret bounds for this general version by a

factor of log T compared to existing reductions to OCO with finite memory. They

116



do so by using that the impact of a past policy decays geometrically with time.

On the other hand, the primary focus of our work is studying the complete de-

pendence of present losses on the entire history in OCO. Applying our resulting

OCO with unbounded memory framework to OLC, we improve upon existing

results for OLC by removing all log T factors and improving the dependence on

d, κ, and (1 − ρ).

4.4.2 Online Performative Prediction

Background. In many applications of machine learning the algorithm’s deci-

sions influence the data distribution, e.g., online labor markets [Anagnostopou-

los et al., 2018, Horton, 2010], predictive policing [Lum and Isaac, 2016], on-

street parking [Dowling et al., 2020, Pierce and Shoup, 2018], vehicle sharing mar-

kets [Banerjee et al., 2015], etc. Motivated by such applications, several works

have studied the problem of performative prediction, which models the data dis-

tribution as a function of the decision-maker’s decision [Perdomo et al., 2020,

Mendler-Dünner et al., 2020, Miller et al., 2021, Brown et al., 2022, Ray et al., 2022,

Jagadeesan et al., 2022]. Most of these works view the problem as a stochastic

optimization problem; Jagadeesan et al. [2022] adopt a regret minimization per-

spective. We refer the reader to these citations for more details. As a natural

extension to existing works, we introduce an online learning variant of performa-

tive prediction (OPP) with geometric decay [Ray et al., 2022] that differs from the

original formulations in a few key ways.
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Let the decision set X ⊆ Rd be closed and convex with ∥x∥2 ≤ DX. Let p1

denote the initial data distribution over the instance space Z. In each round

t ∈ [T ], the learner chooses a decision xt ∈ X and an oblivious adversary

chooses a loss function lt : X × Z → [0, 1], and then the learner suffers the

loss Lt(xt) = Ez∼pt [lt(xt, z)], where pt = pt(x1, . . . , xt) is the data distribution in

round t. The goal in our online learning setting is to minimize the difference

between the algorithm’s total loss and the total loss of the best fixed decision,∑T
t=1 Ez∼pt [lt(xt, z)] − minx∈X

∑T
t=1 Ez∼pt(x) [lt(x, z)], where pt(x) = pt(x, . . . , x) is the data

distribution in round t had x been chosen in all rounds so far. This measure is

similar to performative regret [Jagadeesan et al., 2022] and is a natural general-

ization of performative optimality [Perdomo et al., 2020] for an online learning

formulation.

We make the following assumptions. First, the loss functions lt are convex and

L0-Lipschitz continuous. Second, the data distribution satisfies for all t ≥ 1, pt+1 =

ρpt + (1 − ρ)D(xt), where ρ ∈ (0, 1) and D(xt) is a distribution over Z that depends

on the decision xt [Ray et al., 2022]. Third, D(x) is a location-scale distribution:

z ∼ D(x) iff z ∼ ξ+Fx, where F ∈ Rd×d satisfies ∥F∥2 < ∞ and ξ is a random variable

with mean µ and covariance Σ [Ray et al., 2022].

Our problem formulation differs from existing work in the following ways.

First, we adopt an online learning perspective on performative prediction with

geometric decay, whereas Ray et al. [2022] adopt a stochastic optimization one.

So, we assume that the loss functions lt are adversarially chosen, whereas Ray
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et al. [2022] assume lt = l are fixed. Second, we assume that the dynamics (D

and ρ) are known (Assumption A1), whereas Ray et al. [2022] assume they are un-

known and use samples from the data distribution. We believe that an appropriate

extension of our framework that can deal with unknown linear operators A and

B can be applied to this more difficult setting, and we leave this as future work.

Third, even though Jagadeesan et al. [2022] also study an online learning variant

of performative prediction, they assume lt = l are fixed and the data distribution

depends only on the current decisions, whereas we assume the data distribution

depends on the entire history of decisions.

Formulation as OCO with Unbounded Memory. Now we formulate the online

performative prediction problem in our framework by defining the decision space

X, the history space H , and the linear operators A : H → H and B : W → H .

Then, we define the functions ft : H → R in terms of lt and finally, prove an

upper bound on the policy regret. For notational convenience, let (yk) denote the

sequence (y0, y1, . . . ).

Let ρ ∈ (0, 1). Let the decision space X ⊆ Rd be closed and convex with ∥ · ∥X =

∥ · ∥2. Let the history space H be the ℓ1-direct sum of countably infinte number of

copies of X. Define the linear operators A : H → H and B : X → H as

A((y0, y1, . . . )) = (0, ρy0, ρy1, . . . ) and B(x) = (x, 0, . . . ).

Note that the problem is an OCO with ρ-discounted infinite memory problem and

follows linear sequence dynamics with the 1-norm (Definition 4.2.3).
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Given a sequence of decisions (xk)t
k=1, the history is ht = (xt, ρxt−1, . . . , ρ

t−1x1, 0, . . . )

and the data distribution pt = pt(ht) satisfies:

z ∼ pt iff z ∼
t−1∑
k=1

(1 − ρ)ρk−1(ξ + Fxt−k) + ρt p1. (4.9)

This follows from the recursive definition of pt and parametric assumption about

D(x). Define the functions ft : H → [0, 1] by

ft(ht) = Ez∼pt[lt(xt, z)].

With the above formulation and definition of ft, the original goal of minimizing

the difference between the algorithm’s total loss and the total loss of the best fixed

decision is equivalent to minimizing the policy regret,

RegOPP
T (ALG) =

T∑
t=1

ft(ht) −min
x∈X

T∑
t=1

f̃t(x).

Theorem 4.9. Consider the online performative prediction problem as defined in Sec-

tion 4.4.2. Suppose the decisions in round t are chosen using Algorithm 4. Then, the

upper bound on the policy regret is

RegOPP
T (FTRL) = O

(
DXL0

√
T∥F∥2(1 − ρ)−

1
2ρ−1

)
.

We defer the detailed proofs to Section 4.13.

4.5 Implementation Details

In this section we discuss how to implement Algorithm 4 efficiently.
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Dimensionality of X. First, note that the decisions x ∈ X could be high-

dimensional, e.g., an unbounded sequence of matrices as in the online linear con-

trol problem, but this is external to our framework and is application dependent.

Our framework can be applied to X or to a lower-dimensional decision space X′.

However, the choice of X′ and analyzing the difference

min
x′∈X′

T∑
t=1

f̃t(x′) −min
x∈X

T∑
t=1

f̃t(x)

is application dependent. For example, for the online linear control problem one

could consider a restricted class of disturbance-action controllers that operate on

a constant number of past disturbances as opposed to all the past disturbances,

and then analyze the difference between these two policy classes. See, for exam-

ple, Agarwal et al. [2019b, Lemma 5.2].

Computational cost of each iteration of Algorithm 4. Now we discuss how to

implement each iteration of Algorithm 4 efficiently. We are interested in the com-

putational cost of computing the decision xt+1 as a function of t. (Given the above

discussion about the dimensionality of X, we ignore the fact that the dimension-

ality of the decisions themselves could depend on t.) Therefore, for the purposes

of this section we (i) use O(·) notation to hide absolute constants and problem pa-

rameters excluding t and T ; (ii) invoke the operators A and B by calling oracles

OA(·) and OB(·); and (iii) evaluate the functions ft by calling oracles O f (t, ·). Re-

call from Assumption A1 that we assume the learner knows the operators A and

B, and observes ft at the end of each round t. So, the oracles OA,OB, and O f are
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readily available.

Algorithm 4 chooses the decision xt+1 as

xt+1 ∈ arg min
x∈X

t∑
s=1

f̃s(x) +
R(x)
η
= arg min

x∈X

t∑
s=1

fs

 s−1∑
k=0

AkBx

︸               ︷︷               ︸
= f1:t(x)

+
R(x)
η

.

Since f1:t(x) is a sum of f1, . . . , ft, evaluating f1:t(x) requires Θ(t) oracle calls to O f .

However, this issue is present in FTRL for OCO and OCO with finite memory

as well and is not specific to our framework. To deal with this issue, one could

consider mini-batching algorithms [Dekel et al., 2012, Altschuler and Talwar, 2018,

Chen et al., 2020] such as Algorithm 5.

A naı̈ve implementation to evaluate f1:t(x) could require O(t3) oracle calls to

OA: for each s ∈ [t], constructing the argument
∑s−1

k=0 AkBx for fs could require k

oracle calls to OA to compute AkBx, for a total of O(s2) oracle calls. However, f1:t(x)

can be evaluated with just O(t) oracle calls to OA by constructing the arguments

incrementally. For t ≥ 0, define Γt : X → H as

Γ0(x) = Bx

Γt(x) = A (Γt−1(x)) for t ≥ 1.

Note that Γt(Bx) = AtBx. Also, for t ≥ 1, define Υt : X → H as

Υ1(x) = Γ0(x)

Υt(x) = Υt−1(x) + Γt−1(x) for t ≥ 2.

Note that Υs(x) =
∑s−1

k=0 AkBx is the argument for fs. These can be constructed incre-

mentally as follows.
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1. Construct Γ0(x) using one oracle call to OB.

2. For s = 1,

(a) Construct Υ1(x) = Γ0(x).

(b) Construct Γ1(x) from Γ0(x) using one oracle call to OA.

3. For s ≥ 2,

(a) Construct Υs(x) by adding Υs−1(x) and Γs−1(x). This can be done in O(1)

time. Recall from our earlier discussion that O(·) hides absolute con-

stants and problem parameters excluding t and T .

(b) Construct Γs(x) from Γs−1(x) using one oracle call to OA.

By incrementally constructing Υs(x) as above, we can evaluate f1:t(x) in O(t) time

with O(1) oracle calls to OB, O(t) oracle calls to OA, and O(t) oracle calls to O f .

Memory usage of Algorithm 4. We end with a brief discussion of the memory

usage of Algorithm 4. We are interested in the memory usage of computing the

decision xt+1 as a function of t. (Given the discussion about the dimensionality

of X at the start of this section, we ignore the fact that the dimensionality of the

decisions themselves could depend on t.) For each t ∈ [T ], the memory usage

could be as low as O(1) (if, for example, X ⊆ Rd, and A, B ∈ Rd×d, which implies

that Υt(x) is a d-dimensional vector) or as high as O(t) (if, for example, Υt(x) is

a t-length sequence of d-dimensional vectors). However, the memory usage is
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already Ω(t) to store the functions f1, . . . , ft. Therefore, Algorithm 4 only incurs a

constant factor overhead.

4.6 An Algorithm with A Low Number of Switches: Mini-Batch

FTRL

In this section we present an algorithm (Algorithm 5) for OCO with unbounded

memory that provides the same upper bound on policy regret as Algorithm 4

while guaranteeting a small number of switches. Algorithm 5 combines FTRL

on the functions f̃t with a mini-batching approach. First, it divides rounds

into batches of size S , where S is a parameter. Second, at the start of batch

b ∈ {1, . . . , ⌈T/S⌉}, it performs FTRL on the functions {g1, . . . , gb}, where gi is the

average of the functions f̃t in batch i. Then, it uses this decision for the entirety

of the current batch. By design, Algorithm 5 switches decisions at most O(T/S )

times. This algorithm is insipired by similar algorithms for online learning and

OCO [Dekel et al., 2012, Altschuler and Talwar, 2018, Chen et al., 2020].

Theorem 4.10. Consider an online convex optimization with unbounded memory prob-

lem specified by (X,H , A, B). Let the regularizer R : X → R be α-strongly-convex and

satisfy |R(x) − R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 5 with batch size S and step-size η

satisfies

RegOCO−UM
T (Mini − Batch FTRL) ≤

S D
η
+ η

T L̃2

α
+ η

T LL̃H1

Sα
.
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Algorithm 5: Mini − Batch FTRL
Input : Time horizon T , step size η, α-strongly-convex regularizer

R : X → R, batch size S .
1 Initialize history h0 = 0.
2 for t = 1, 2, . . . ,T do
3 if t mod S = 1 then
4 Let Nt = {1, . . . , ⌈ t

S ⌉} denote the number of batches so far.
5 For b ∈ Nt, let Tb = {(b− 1)S + 1, . . . , bS } denote the rounds in batch b.
6 For b ∈ Nt, let gb =

1
S

∑
s∈Tb

f̃s. denote the average of the functions in
batch b.

7 Learner chooses xt ∈ arg minx∈X
∑

b∈Nt
gb(x) + R(x)

η
.

8 end
9 else

10 Learner chooses xt = xt−1.
11 end
12 Set ht = Aht−1 + Bxt.
13 Learner suffers loss ft(ht) and observes ft.
14 end

If η =
√

αS D

T L̃
(

LH1
S +L̃

) , then

RegOCO−UM
T (Mini − Batch FTRL) ≤ O

√D
α

T
(
LL̃H1 + S L̃2

) .
Setting the batch size to be S = LH1/L̃ we obtain the same upper bound on policy

regret as Algorithm 4 while guaranteeing that the decisions xt switch at most T L̃/LH1

times.

Corollary 4.6.1. Consider an online convex optimization with unbounded memory prob-

lem specified by (X,H , A, B). Let the regularizer R : X → R be α-strongly-convex and

satisfy |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 5 with batch size S = LH1
L̃ and step-size
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η =
√

αS D

T L̃
(

LH1
S +L̃

) satisfies

RegOCO−UM
T (Mini − Batch FTRL) ≤ O

√D
α

T LL̃H1

 .
Furthermore, the decisions xt switch at most T L̃

LH1
times.

We defer the proof to Section 4.14. Intuitively, in the OCO with unbounded

memory framework each decision xt is penalized not just in round t but in future

rounds as well. Therefore, instead of immediately changing the decision, it is

prudent to stick to it for a while, collect more data, and then switch decisions. For

the OCO with finite memory problem, the constant memory length m provides a

natural measure of how long decisions penalized for and when one should switch

decisions. In the general case, this is measured by the quantity LH1/L̃. Note that this

simplifies to m for OCO with finite memory for all p-norms.

Note that Theorem 4.10 only provides an upper bound on the policy regret for

the general case. Unlike Algorithm 4, it is unclear how to obtain a stronger bound

depending on Hp for the case of linear sequence dynamics with the ξ-weighted p-

norm for p > 1. (See the proofs and discussion in Section 4.14.) However, for the

special case of OCO with finite memory, which follows linear sequence dynamics

with the 2-norm, we can do so by leveraging the special structure of the linear

operator Afinite,m.

Theorem 4.11. Consider an online convex optimization with finite memory problem with

constant memory length m specified by (X,H = Xm, Afinite,m, Bfinite,m). Let the regularizer
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R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 5

with batch size m and step-size η =
√

αmD

T L̃
(
Lm

1
2 +L̃

) satisfies

RegOCO−UM
T (Mini − Batch FTRL) ≤ O

√D
α

T LL̃m
3
2

 ≤ O

m √
D
α

T L2

 .
Furthermore, the decisions xt switch at most T

m times.

4.7 Experiments

In this section we present some simple simulation experiments. The imple-

mentation of our algorithms and code to reproduce the results are available at

https://github.com/raunakkmr/oco-with-memory-code.

Problem Setup. We consider the problem of online linear control with a constant

input controller class Π = {πu : π(s) = u ∈ U}. Let T denote the time horizon. Let

S = Rd andU = {u ∈ Rd : ∥u∥2 ≤ 1} denote the state and control spaces. Let st and

ut denote the state and control at time t with s0 being the initial state. The system

evolves according to linear dynamics st+1 = Fst + Gut + wt, where F,G ∈ Rd×d are

system matrices and wt ∈ R
d is a disturbance. The loss function in round t is simply

ct(st, ut) = ct(st) =
∑d

j=1 st, j, where st, j denotes the j-th coordinate of st. The goal is

to choose a sequence of control inputs u0, . . . , uT−1 ∈ U to minimize the regret

T−1∑
t=0

ct(st, ut) −min
u∈U

T−1∑
t=0

ct(su
t , u),
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where su
t denotes the state in round t upon choosing control input u in each round.

Note that the state in round t can be written as

st =

t∑
k=1

FkGut−k +

t∑
k=1

Fkwt−k.

Therefore, we can formulate this problem as an OCO with unbounded memory

problem by setting X = U,H = {y ∈ Rd : y =
∑t

k=0 FkGu for some u ∈ U and t ∈

N}, A(h) = Fh, B(x) = Gx, and ft(ht) = ct(
∑t

k=1 FkGut−k +
∑t

k=1 Fkwt−k). Note thatH , A,

and B are all finite-dimensional.

Data. We set the time horizon T = 750 and dimension d = 2. We sample the

disturbances {wt} from a standard normal distribution. We set the system matrix

G to be the identity and the system matrix F to be a diagonal plus upper triangular

matrix with the diagonal entries equal to ρ and the upper triangular entries equal

to α. We run simulations with various values of ρ and α.

Implementation. We use the cvxpy library [Diamond and Boyd, 2016, Agrawal

et al., 2018] for implementing Algorithm 4. We use step-sizes according to Theo-

rems 4.2 and 4.4. We run the experiments on a standard laptop.

Results. We compare the regret with respect to the optimal control input of

OCO with unbounded memory and OCO with finite memory for various mem-

ory lengths m in Fig. 4.3 for ρ = 0.90 and Fig. 4.4 for ρ = 0.95. There are a few

important takeaways.
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(a) (b)

(c) (d)

Figure 4.3: Regret plot for ρ = 0.90. The label OCO-UM refers to formulating the
problem as an OCO with unbounded memory problem. The OCO-FM-m refers to
formulating the problem as an OCO with finite memory problem with constant
memory length m. The titles of the plots indicate the values of the dimension, the
diagonal entries of F, and the upper triangular entries of F.

1. OCO with unbounded memory either performs as well as or better than

OCO with finite memory, and it does so at comparable computational

cost (Section 4.5). In fact, the regret curve for OCO with unbounded mem-

ory reaches an asymptote whereas this is not the case for OCO with finite

memory for a variety of memory lengths.

2. Knowledge of the spectral radius of F, ρ, is not sufficient to tune the mem-
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ory length m for OCO with finite memory. This is illustrated by compar-

ing Figs. 4.3a to 4.3d. Even though small memory lengths perform well

when the upper triangular value is small, they perform poorly when the

upper triangular value is large. In contrast, OCO with unbounded memory

performs well in all cases.

3. For a fixed memory length, OCO with unbounded memory eventually per-

forms better than OCO with finite memory. This is illustrated by compar-

ing Figs. 4.3a to 4.3d.

4. As we increase the memory length, the performance of OCO with finite

memory eventually approaches that of OCO with unbounded memory.

However, an advantage of OCO with unbounded memory is that it does

not require tuning the memory length. For example, when ρ = 0.90 and the

upper triangular entry of F = 0.10, OCO with finite memory with m = 4

performs comparably to m = 8 and m = 16 (Fig. 4.3c). However, when the

upper triangular entry of F = 0.12, then it performs much worse (Fig. 4.3d).

However, OCO with unbounded memory performs well in all cases without

the need for tuning an additional hyperparameter in the form of memory

length.
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(a) (b)

(c) (d)

(e)

Figure 4.4: Regret plot for ρ = 0.95. The label OCO-UM refers to formulating the
problem as an OCO with unbounded memory problem. The OCO-FM-m refers to
formulating the problem as an OCO with finite memory problem with constant
memory length m. The titles of the plots indicate the values of the dimension, the
diagonal entries of F, and the upper triangular entries of F.
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4.8 Discussion

In this chapter we introduced a generalization of the OCO framework, “Online

Convex Optimization with Unbounded Memory”, that allows the loss in the cur-

rent round to depend on the entire history of decisions until that point. We proved

matching upper and lower bounds on the policy regret in terms of the time hori-

zon, the p-effective memory capacity (a quantitative measure of the influence of

past decisions on present losses), and other problem parameters (Theorems 4.2

and 4.3). As a special case, we proved the first non-trivial lower bound for OCO

with finite memory (Theorem 4.5), which could be of independent interest, and

also improved existing upper bounds (Theorem 4.4). We illustrated the power

of our framework by bringing together the regret analysis of two seemingly dis-

parate problems under the same umbrella: online linear control (Theorem 4.8),

where we improve and simplify existing regret bounds, and online performative

prediction (Theorem 4.9).

There are a number of directions for future research. A natural follow-up is to

consider unknown dynamics (i.e., when the learner does not know the operators

A and B) and/or the case of bandit feedback (i.e., when the learner only observes

ft(ht)). The extension to bandit feedback has been considered in the OCO and

OCO with finite memory literature [Hazan and Li, 2016, Bubeck et al., 2021, Zhao

et al., 2021, Gradu et al., 2020, Cassel and Koren, 2020]. It is tempting to think

about a version where the history is a nonlinear, but decaying, function of the

past decisions. The obvious challenge is that the nonlinearity would lead to non-
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convex losses. It is unclear how to deal with such issues, e.g., restricted classes

of nonlinearities for which the OCO with unbounded memory perspective is still

relevant [Zhang et al., 2015], different problem formulations such as online non-

convex learning [Gao et al., 2018, Suggala and Netrapalli, 2020], etc.

There is a growing body of work on online linear control and its variants that

rely on OCO with finite memory [Hazan et al., 2020, Agarwal et al., 2019c, Foster

and Simchowitz, 2020, Cassel and Koren, 2020, Gradu et al., 2020, Li et al., 2021b,

Minasyan et al., 2021]. In this chapter we showed how our framework can be

used to improve and simplify regret bounds for the online linear control problem.

Another direction for future work is to use our framework, perhaps with suitable

extensions outlined above, to derive similar improvements for these other vari-

ants of online linear control.
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4.9 Proofs for Section 4.2: Framework

In this section prove Theorem 4.1. But first we prove a lemma that we use for

proofs involving linear sequence dynamics with the ξ-weighted p-norm (Def-

inition 4.2.3). Recall that ∥ · ∥U denotes the norm associated with a space U

and the operator norm ∥L∥ for a linear operator L : U → V is defined as

∥L∥ = maxu:∥u∥U≤1 ∥Lu∥V.

Lemma 4.9.1. Consider an online convex optimization with unbounded memory problem

specified by (X,H , A, B). If (X,H , A, B) follows linear sequence dynamics with the ξ-

weighted p-norm for p ≥ 1, then for all k ≥ 1

ξk∥Ak−1 · · · A0∥ ≤ ∥Ak∥.

Proof. Let x ∈ Xwith ∥x∥X = 1. We have

ξk∥Ak−1 · · · A0x∥X = ∥Ak(x, 0, . . . )∥H ≤ ∥Ak∥∥(x, 0, . . . )∥H ≤ ∥Ak∥,

where the last inequality follows because ∥(x, 0, . . . )∥H = ξ0∥x∥X and ξ0 = 1 by Def-

inition 4.2.3. Therefore, ∥Ak−1 · · · A0∥ ≤ ∥Ak∥. ■

Theorem 4.1. Consider an online convex optimization with unbounded memory problem

specified by (X,H , A, B). If ft is L-Lipschitz continuous,

L̃ ≤ L
∞∑

k=0

∥Ak∥.

If (X,H , A, B) follows linear sequence dynamics with the ξ-weighted p-norm for p ≥ 1,

then

L̃ ≤ L

 ∞∑
k=0

∥Ak∥p


1
p

.
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Proof. Let x, x̃ ∈ X. For the general case, we have

∣∣∣ f̃t(x) − f̃t(x̃)
∣∣∣ = ∣∣∣∣∣∣∣ ft

 t−1∑
k=0

AkBx

 − ft

 t−1∑
k=0

AkBx̃


∣∣∣∣∣∣∣ by Definition 4.2.1

≤ L

∥∥∥∥∥∥∥
t−1∑
k=0

AkB(x − x̃)

∥∥∥∥∥∥∥
H

ft is L-Lipschitz continuous

≤ L
t−1∑
k=0

∥Ak∥∥B∥∥x − x̃∥X

≤ L
t−1∑
k=0

∥Ak∥∥x − x̃∥X by Assumption A2

≤ L
∞∑

k=0

∥Ak∥∥x − x̃∥X.

If (H ,X, A, B) follows linear sequence dynamics with the ξ-weighted p-norm

for p ≥ 1, then we have

∣∣∣ f̃t(x) − f̃t(x̃)
∣∣∣ = ∣∣∣∣∣∣∣ ft

 t−1∑
k=0

AkBx

 − ft

 t−1∑
k=0

AkBx̃


∣∣∣∣∣∣∣ by Definition 4.2.1

≤ L

∥∥∥∥∥∥∥
t−1∑
k=0

AkB(x − x̃)

∥∥∥∥∥∥∥
H

ft is L-Lipschitz continuous

= L ∥(0, A0(x − x̃), A1A0(x − x̃), . . . )∥ by Definition 4.2.3

= L

 t−1∑
k=0

ξ
p
k ∥Ak−1 · · · A0(x − x̃)∥p


1
p

by Definition 4.2.3

≤ L

 t−1∑
k=0

∥Ak∥p


1
p

∥x − x̃∥X by Lemma 4.9.1

≤ L

 ∞∑
k=0

∥Ak∥p


1
p

∥x − x̃∥X . ■
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4.10 Proofs for Section 4.3: Upper Bounds

First we prove a lemma that bounds the difference in the value of ft evaluated at

the actual history ht and an idealized history that would have been obtained by

playing xt in all prior rounds.

Lemma 4.10.1. Consider an online convex optimization with unbounded memory prob-

lem specified by (X,H , A, B). If the decisions (xt) are generated by Algorithm 4, then

∣∣∣ ft(ht) − f̃t(xt)
∣∣∣ ≤ ηLL̃H1

α

for all rounds t. When (X,H , A, B) follows linear sequence dynamics with the ξ-weighted

p-norm for p ≥ 1, then ∣∣∣ ft(ht) − f̃t(xt)
∣∣∣ ≤ ηLL̃Hp

α

for all rounds t.

Proof. We have

∣∣∣ ft(ht) − f̃t(xt)
∣∣∣ = ∣∣∣∣∣∣∣ ft(ht) − ft

 t−1∑
k=0

AkBxt


∣∣∣∣∣∣∣ by Definition 4.2.1

≤ L

∥∥∥∥∥∥∥ht −

t−1∑
k=0

AkBxt

∥∥∥∥∥∥∥ by Assumption A4

= L

∥∥∥∥∥∥∥
t−1∑
k=0

AkBxt−k −

t−1∑
k=0

AkBxt

∥∥∥∥∥∥∥ by definition of ht

= L

∥∥∥∥∥∥∥
t−1∑
k=0

AkB(xt−k − xt)

∥∥∥∥∥∥∥︸                   ︷︷                   ︸
(a)

. (4.10)
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First consider the general case where (X,H , A, B) does not necessarily follow linear

sequence dynamics. We can bound the term (a) as∥∥∥∥∥∥∥
t−1∑
k=0

AkB(xt−k − xt)

∥∥∥∥∥∥∥ ≤
t−1∑
k=0

∥∥∥AkB
∥∥∥ ∥xt − xt−k∥

≤

t−1∑
k=0

∥∥∥AkB
∥∥∥ kη

L̃
α

by Theorem 2.1

≤

t−1∑
k=0

∥∥∥Ak
∥∥∥ kη

L̃
α

by Assumption A2

≤ η
L̃
α

H1.

Plugging this into Eq. (4.10) completes the proof for the general case. Now con-

sider the case when (X,H , A, B) follows linear sequence dynamcis with the ξ-

weighted p-norm. We can bound the term (a) as∥∥∥∥∥∥∥
t−1∑
k=0

AkB(xt−k − xt)

∥∥∥∥∥∥∥ = ∥(0, A0(xt − xt−1), A1A0(xt − xt−2), . . . )∥ by Definition 4.2.3

=

 t−1∑
k=0

ξ
p
k ∥Ak−1 · · · A0(xt − xt−k)∥p


1
p

by Definition 4.2.3

≤

 t−1∑
k=0

ξ
p
k ∥Ak−1 · · · A0∥

p
∥xt − xt−k∥

p


1
p

≤

 t−1∑
k=0

∥∥∥Ak
∥∥∥p
∥xt − xt−k∥

p


1
p

by Lemma 4.9.1

≤ η
L̃
α

 t−1∑
k=0

∥∥∥Ak
∥∥∥p

kp


1
p

by Theorem 2.1

≤ η
L̃
α

Hp.

Plugging this into Eq. (4.10) completes the proof. ■
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Now we restate and prove Theorem 4.2

Theorem 4.2. Consider an online convex optimization with unbounded memory problem

specified by (X,H , A, B). Let the regularizer R : X → R be α-strongly-convex and satisfy

|R(x) − R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 4 with step-size η satisfies

RegOCO−UM
T (FTRL) ≤

D
η
+ η

T L̃2

α
+ η

T LL̃H1

α
.

If η =
√

αD
T L̃(LH1+L̃) , then

RegOCO−UM
T (FTRL) ≤ O

√D
α

T LL̃H1

 .
When (X,H , A, B) follows linear sequence dynamics with the ξ-weighted p-norm, then all

of the above hold with Hp instead of H1.

Proof. First consider the general case where (X,H , A, B) does not necessarily fol-

low linear sequence dynamics. Let x∗ ∈ arg minx∈X
∑T

t=1 f̃t(x). Note that we can

write the regret as

RegT (FTRL) =
T∑

t=1

ft(ht) −min
x∈X

T∑
t=1

f̃t(x)

=

T∑
t=1

ft(ht) − f̃t(xt)︸               ︷︷               ︸
(a)

+

T∑
t=1

f̃t(xt) − f̃t(x∗)︸               ︷︷               ︸
(b)

.

We can bound term (a) using Lemma 4.10.1 and term (b) using Theorem 2.1.
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Therefore, we have

RegT (FTRL) =
T∑

t=1

ft(ht) − f̃t(xt)︸               ︷︷               ︸
(a)

+

T∑
t=1

f̃t(xt) − f̃t(x∗)︸               ︷︷               ︸
(b)

≤ η
T LL̃H1

α
+

D
η
+ η

T L̃2

α
.

Choosing η =
√

αD
T L̃(LH1+L̃) yields

RegT (FTRL) ≤ O

√D
α

T LL̃H1

 ,
where we used the definition of p-effective memory capacity (Definition 4.2.4) and

the bound on L̃ (Theorem 4.1) to simplify the above expression. This completes the

proof for the general case. The proof for when (X,H , A, B) follows linear sequence

dynamcis with the ξ-weighted p-norm is the same as above, except we bound the

term (a) above using Lemma 4.10.1 for linear sequence dynamics. ■

Now we restate and prove Theorem 4.4.

Theorem 4.4. Consider an online convex optimization with finite memory problem with

constant memory length m specified by (X,H = Xm, Afinite,m, Bfinite,m). Let the regularizer

R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 4

with step-size η =
√

αD

T L̃(Lm
3
2 +L̃)

satisfies

RegOCO−UM
T (FTRL) ≤ O

√D
α

T LL̃m
3
2

 ≤ O

m √
D
α

T L2

 .
The OCO with finite memory problem, as defined in the literature, follows

linear sequence dynamics with the 2-norm. Here, we consider a more general
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version of the OCO with finite memory problem that follows linear sequence dy-

namics with the p-norm. We provide an upper bound on the policy regret for this

more general formulation and the proof of Theorem 4.4 follows as a special case

when p = 2.

Theorem 4.12. Consider an online convex optimization with finite memory problem with

constant memory length m, (X,H = Xm, Afinite,m, Bfinite,m). Assume that the problem fol-

lows linear sequence dynamics with the p-norm for p ≥ 1. Let the regularizer R : X → R

be α-strongly-convex and satisfy |R(x) − R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 4 with

step-size η satisfies

RegT (FTRL) ≤ O

√D
α

T LL̃m
p+1

p

 ≤ O

√D
α

T L2m
p+2

p

 .
Proof. Using Theorem 4.2 it suffices to bound L̃ and Hp for this problem. Note that

∥Ak
finite∥ = 1 if k ≤ m and 0 otherwise. Using this we have

Hp =

 ∞∑
k=0

(
k∥Ak

finite∥
)p


1
p

=

 m∑
k=0

kp


1
p

≤ O
(
m

p+1
p

)
.

This proves the first inequality in the statement of the theorem. The second in-

equality follows from the above and Theorem 4.1, which states that

L̃ ≤ L

 ∞∑
k=0

∥Ak
finite∥

p


1
p

= Lm
1
p . ■

Now we provide an upper bound on the policy regret for the OCO with ρ-

discounted infinite memory problem. We restate and prove Theorem 4.6
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Theorem 4.6. Consider an online convex optimization with ρ-discounted infinite mem-

ory problem (X,H , Ainfinite,ρ, Binfinite). Suppose that the problem follows linear sequence

dynamics with the 2-norm. Let the regularizer R : X → R be α-strongly-convex and

satisfy |R(x) − R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 4 with step-size η satisfies

RegOCO−UM
T (FTRL) ≤ O

√D
α

T LL̃(1 − ρ2)−
3
2

 ≤ O

√D
α

T L2(1 − ρ)−2

 .
Proof. Using Theorem 4.2, it suffices to bound L̃ and Hp for this problem. Recall

that ∥Ak
infinite,ρ∥ = ρ

k. Using this we have

H2 =

 ∞∑
k=0

(
k∥Ak

finite∥
)2


1
2

=

 ∞∑
k=0

(
kρk

)2


1
2

≤ (1 − ρ2)−
3
2 .

This proves the first inequality in the statement of the theorem. The second in-

equality follows from the following. Note that Theorem 4.1 yields

L̃ ≤ L

 ∞∑
k=0

∥Ak
infinite,ρ∥

2


1
2

= L(1 − ρ2)−
1
2 .

Therefore,

RegOCO−UM
T (FTRL) ≤ O

√D
α

T L2(1 − ρ2)−2

 .
Now, the second inequality follows from using 1−ρ2 = (1+ρ)(1−ρ), which implies

that 1 − ρ ≤ 1 − ρ2 ≤ 2(1 − ρ) because ρ ∈ (0, 1). ■

Existing Regret Bound for OCO with Finite Memory. Now we provide a de-

tailed comparison of our upper bound on the policy regret for OCO with finite

memory with that of Anava et al. [2015]. The material in this subsection comes
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from Appendix A.2 of their arXiv version or Appendix C.2 of their conference

version.

The existing upper bound on regret is

O
( √

DTλm
3
2

)
,

where D = maxx,x̃∈X |R(x) − R(x̃)|. Although the parameter λ is defined in terms of

dual norms of the gradient of f̃t, it is essentially the Lipschitz-continuity constant

for f̃t: for all x, x̃ ∈ X, ∣∣∣ f̃t(x) − f̃t(x̃)
∣∣∣ ≤ √λα∥x − x̃∥,

where α is the strong-convexity parameter of the regularizer R (orσ in the notation

of Anava et al. [2015]). Therefore, the existing regret bound can be rewritten as

O

L̃

√
D
α

Tm
3
2

 .
Our upper bound on the policy regret for OCO with finite memory Theo-

rem 4.4 is

O

√D
α

LL̃Tm
3
2

 .
Since L̃ ≤

√
mL by Theorem 4.1, this leads to an improvement by a factor of m

1
4 .

4.11 Proofs for Section 4.3: Lower Bounds

We first restate Theorems 4.3 and 4.5.
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Theorem 4.3. There exists an instance of the online convex optimization with unbounded

memory problem, (X,H , A, B), that follows linear sequence dynamics with the ξ-weighted

p-norm and there exist L-Lipschitz continuous loss functions { ft : H → R}Tt=1 such that

the regret of any algorithmA satisfies

RegOCO−UM
T (A) ≥ Ω

(√
T LL̃Hp

)
.

Theorem 4.5. There exists an instance of the online convex optimization with finite mem-

ory problem with constant memory length m, (X,H = Xm, Afinite,m, Bfinite,m), and there exist

L-Lipschitz continuous loss functions { ft : H → R}Tt=1 such that the regret of any algo-

rithmA satisfies

RegOCO−UM
T (A) ≥ Ω

(
m
√

T L2
)
.

Theorem 4.3 follows from Theorem 4.5. However, the lower bound is true for

a much broader class of problems as we show in this section. We first provide

a lower bound for a more general formulation of the OCO with finite memory

problem (Theorem 4.13). The proof of Theorem 4.5 follows as a special case when

p = 2. Then, we provide a lower bound for the OCO with ρ-discounted infinite

memory problem (Theorem 4.7).

The OCO with finite memory problem, as defined in the literature, follows lin-

ear sequence dynamics with the 2-norm. In this section we consider a more gen-

eral version of the OCO with finite memory problem that follows linear sequence

dynamics with the p-norm. We provide a lower bound on the policy regret for

this more general formulation and the proof of Theorem 4.5 follows as a special

case when p = 2.
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Theorem 4.13. For all p ≥ 1, there exists an instance of the online convex op-

timization with finite memory problem with constant memory length m, (X,H =

Xm, Afinite,m, Bfinite,m), that follows linear sequence dynamics with the p-norm, and there

exist L-Lipschitz continuous loss functions { ft : H → R}Tt=1 such that the regret of any

algorithmA satisfies

RegT (A) ≥ Ω
√T L2m

p+2
p

 .
Proof. LetX = [−1, 1] and consider an OCO with finite memory problem with con-

stant memory length m, (X,H = Xm, Afinite,m, Bfinite,m), that follows linear sequence

dynamics with the p-norm. For simplicity, assume that T is a multiple of m (other-

wise, the same proof works but with slightly more tedious bookkeeping) and that

L = 1 (otherwise, multiply the functions ft defined below by L).

Divide the T rounds into N = T
m blocks of m rounds each. Sample N indepen-

dent Rademacher random variables {ϵ1, . . . , ϵN}, where each ϵi is equal to ±1 with

probability 1
2 . Recall that ht = (xt, . . . , xt−m+1). Define the loss functions { ft}

T
t=1 as

follows. (See Fig. 4.5 for an illustration.) If t ≤ m, let ft = 0. Otherwise, let

ft(ht) = ϵ⌈ t
m ⌉

m
1−p

p

m−1−(t−m⌊ t
m ⌋−1)∑

k=0

xm⌊ t
m ⌋+1−k

= ϵ⌈ t
m ⌉

m
1−p

p
(
xt−m+1 + · · · + xm⌊ t

m ⌋+1

)
.

In words, the loss in the first m rounds is equal to 0. Thereafter, in round t the loss

is equal to a random sign ϵ⌈ t
m ⌉

, which is fixed for that block, times a scaling factor,

which is chosen according to the p-norm to ensure that the Lipschitz constant L is

at most 1, times a sum of a subset of past decisions in the history ht = (xt, . . . , xt−m+1).
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Timex1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ϵ1 ϵ2 ϵ3 ϵ4

f4(h4) = ϵ2 3−
1
2 (x2 + x3 + x4)

f5(h5) = ϵ2 3−
1
2 (x3 + x4)

f6(h6) = ϵ2 3−
1
2 (x4)

T = 12,m = 3, L = 1. Resample every m rounds.

Figure 4.5: An illustration of the loss functions ft for the OCO with finite memory
lower bound. Suppose T = 12,m = 3, L = 1, and p = 2. Time is divided into
blocks of size m = 3. Consider round t = 5. The history is h5 = (x3, x4, x5). The loss
function f5(h5) is a product of three terms: a random sign ϵ2 sampled for the block
that round 5 belongs to, namely, block 2; a scaling factor of m−

1
2 ; a sum over the

decisions in the history excluding those that were chosen after observing ϵ2, i.e., a
sum over x3 and x4, excluding x5. The teal and orange shading indicate whether
or not a decision was used to construct the loss function in a round. For example,
x3 and x4 are shaded teal because they are used to construct the loss function f5.
However, x5 is shaded orange because it is not used to construct f5.

This subset consists of all past decisions until and including the first decision of

the current block, which is the decision in round m⌊ t
m⌋ + 1.

The functions ft are linear, so they are convex. In order to show that they satisfy

Assumptions A3 and A4, it remains to show that they are 1-Lipschitz continuous.

Let h = (x(1), . . . , x(m)) and h̃ = (x̃(1), . . . , x̃(m)) be arbitrary elements of H = Xm. We
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have

∣∣∣ ft(h) − ft(h̃)
∣∣∣

≤

∣∣∣∣ϵ⌈ t
m ⌉

m
1−p

p
(
(x(1) − x̃(1)) + · · · + (x(m) − x̃(m))

)∣∣∣∣
≤ m

1−p
p

∣∣∣(x(1) − x̃(1)) + · · · + (x(m) − x̃(m))
∣∣∣ because ϵ⌈ t

m ⌉
∈ {−1,+1}

≤ m
1−p

p m1− 1
p

 m∑
k=1

∣∣∣x(k) − x̃(k)
∣∣∣p

1
p

by Hölder’s inequality

= ∥h − h̃∥H ,

where the last equality follows because of our assumption that the problem that

follows linear sequence dynamics with the p-norm.

First we will show that the total expected loss of any algorithm is 0, where

the expectation is with respect to the randomness in the choice of {ϵ1, . . . , ϵN}. The

total loss in the first block is 0 because ft = 0 for t ∈ [m]. For each subsequent

block n ∈ {2, . . . ,N}, the total loss in block n depends on the algorithm’s choices

made before observing ϵn, namely, {x(n−2)m+2, . . . , x(n−1)m+1}. Since ϵn is equal to ±1

with probability 1
2 , the expected loss of any algorithm in a block is equal to 0 and

the total expected loss is also equal to 0.

Now we will show that the expected loss of the benchmark is at most

−O
√Tm

p+2
p

 ,
where the expectation is with respect to the randomness in the choice of
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{ϵ1, . . . , ϵN}. We have

E

min
x∈X

T∑
t=1

f̃t(x)

 = E
min

x∈X

N∑
n=2

nm∑
t=(n−1)m+1

f̃t(x)


= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

ϵnm
1−p

p × x × (m − (t − (n − 1)m − 1))

 .
The first equality follows from first summing over blocks and then summing over

the rounds in that block. The second equality follows from the definitions of ft

above and of f̃t (Definition 4.2.1). By the defintion of f̃t, the history ht consists of

m copies of x for t ≥ m.. By the definition of ft, which sums over all past decisions

until the first round of the current block, we have that within a block the sum first

extends over m copies of x (in the first round of the block), then m − 1 copies of x

(in the second round of the block), and so on until the last round of the block. So,

we have

E

min
x∈X

T∑
t=1

f̃t(x)

 = E
min

x∈X

N∑
n=2

nm∑
t=(n−1)m+1

ϵnm
1−p

p × x × (m − (t − (n − 1)m − 1))


= E

min
x∈X

N∑
n=2

m−1∑
k=0

ϵnm
1−p

p × x × (m − k)


= m

1−p
p

m2 + m
2

E

min
x∈X

N∑
n=2

ϵnx


= m

1−p
p

m2 + m
2

E

 min
x∈{−1,1}

N∑
n=2

ϵnx


= m

1−p
p

m2 + m
2

E

1
2

N∑
n=2

ϵn(−1 + 1) −
1
2

∣∣∣∣∣∣∣
N∑

n=2

ϵn(−1 − 1)

∣∣∣∣∣∣∣
 ,
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where the second-last equality follows because the minima of a linear function

over an interval is at one of the endpoints and the last equality follows because

min{x, y} = 1
2 (x + y) − 1

2 |x − y|. Since ϵn are Rademacher random variables equal to

±1 with probability 1
2 , we can simplify the above as

E

min
x∈X

T∑
t=1

f̃t(x)

 = m
1−p

p
m2 + m

2
E

−1
2

∣∣∣∣∣∣∣
N∑

n=2

−2ϵn

∣∣∣∣∣∣∣


= m
1−p

p
m2 + m

2
E

−
∣∣∣∣∣∣∣

N∑
n=2

ϵn

∣∣∣∣∣∣∣


= −m
1−p

p
m2 + m

2
E


∣∣∣∣∣∣∣

N∑
n=2

ϵn

∣∣∣∣∣∣∣


≤ −m
1−p

p
m2 + m

2

√
N,

where the last inequality follows from Khintchine’s inequality. Using the defini-

tion N = T
m , we have

E

min
x∈X

T∑
t=1

f̃t(x)

 ≤ −m
1−p

p
m2 + m

2

√
T
m

= −
1
2

√
T

(
m

3
2+

1−p
p + m

1
2+

1−p
p

)
≤ −O

(√
Tm

3
2+

1−p
p

)
= −O

(√
Tm

p+2
2p

)
= −O

√Tm
p+2

p

 .
Therefore, we have

Eϵ1,...,ϵN

[
RegT (FTRL)

]
= E

 T∑
t=1

ft(ht)

 − E min
x∈X

T∑
t=1

f̃t(x)

 ≥ Ω √Tm
p+2

p

 .
This completes the proof. ■
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Now we provide a lower bound for the OCO with ρ-discounted infinite mem-

ory problem. We restate and prove Theorem 4.7.

Theorem 4.7. Let ρ ∈ [ 1
2 , 1). There exists an instance of the online convex optimization

with ρ-discounted infinite memory problem, (X,H , Ainfinite,ρ, Binfinite), that follows linear

sequence dynamics with the 2-norm and there exist L-Lipschitz continuous loss functions

{ ft : H → R}Tt=1 such that the regret of any algorithmA satisfies

RegOCO−UM
T (A) ≥ Ω

( √
T L2(1 − ρ)−2

)
.

The proof is very similar to that of Theorem 4.13 with slight adjustments to

account for a ρ-discounted infinite memory instead of a finite memory of constant

size m.

Proof. Let X = [−1, 1] and consider an OCO with infinite memory problem with

discount factor ρ, (X,H , Ainfinite,ρ, Binfinite), that follows linear sequence dynamics

with the 2-norm. For simplicity, assume that T is a multiple of (1−ρ)−1 (otherwise,

the same proof works but with slightly more tedious bookkeeping) and that L = 1

(otherwise, multiply the functions ft defined below by L).

Define m = (1 − ρ)−1. Divide the T rounds into N = T
m blocks of m rounds each.

Sample N independent Rademacher random variables {ϵ1, . . . , ϵN}, where each ϵi is

equal to ±1 with probability 1
2 . Recall that ht = (xt, ρxt−1, . . . , ρ

t−1x1, 0, . . . ). Define

the loss functions { ft}
T
t=1 as follows. If t ≤ m, let ft = 0. Otherwise, let

ft(ht) = ϵ⌈ t
m ⌉

m−
1
2

m−1∑
k=0

ρk+t−m⌊ t
m ⌋−1xm⌊ t

m ⌋+1−k.
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The functions ft are linear, so they are convex. In order to show that they satisfy

Assumptions A3 and A4, it remains to show that they are 1-Lipschitz continuous.

Let h = (x(1), ρx(2), . . . ) and h̃ = (x̃(1), ρx̃(2), . . . ) be arbitrary elements ofH . We have

∣∣∣ ft(h) − ft(h̃)
∣∣∣

≤

∣∣∣∣∣∣∣ϵ⌈ t
m ⌉

m−
1
2

m∑
k=1

ρk−1
(
x(k) − x̃(k)

)∣∣∣∣∣∣∣
≤ m−

1
2

∣∣∣∣∣∣∣
m∑

k=1

ρk−1
(
x(k) − x̃(k)

)∣∣∣∣∣∣∣ because ϵ⌈ t
m ⌉
∈ {−1,+1}

≤ m−
1
2 m

1
2

 m∑
k=1

ρ2(k−1)
∣∣∣x(k) − x̃(k)

∣∣∣2
1
2

by Hölder’s inequality

≤ ∥h − h̃∥H ,

where the last equality follows because the follows linear sequence dynamics with

the 2-norm.

First we will show that the total expected loss of any algorithm is 0, where

the expectation is with respect to the randomness in the choice of {ϵ1, . . . , ϵN}. The

total loss in the first block is 0 because ft = 0 for t ∈ [m]. For each subsequent

block n ∈ {2, . . . ,N}, the total loss in block n depends on the algorithm’s choices

made before observing ϵn, namely, {x(n−2)m+2, . . . , x(n−1)m+1}. Since ϵn is equal to ±1

with probability 1
2 , the expected loss of any algorithm in a block is equal to 0 and

the total expected loss is also equal to 0.

Now we will show that the expected loss of the benchmark is at most

−O
( √

T (1 − ρ)−2
)
,
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where the expectation is with respect to the randomness in the choice of

{ϵ1, . . . , ϵN}. We have

E

min
x∈X

T∑
t=1

f̃t(x)

 = E
min

x∈X

N∑
n=2

nm∑
t=(n−1)m+1

f̃t(x)


= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

ϵnm−
1
2

m−1∑
k=0

ρk+t−(n−1)m−1x


= m−

1
2E

min
x∈X

N∑
n=2

ϵnx
nm∑

t=(n−1)m+1

ρt−(n−1)m−1
m−1∑
k=0

ρk


= m−

1
2
1 − ρm

1 − ρ
E

min
x∈X

N∑
n=2

ϵnx
nm∑

t=(n−1)m+1

ρt−(n−1)m−1


= m−

1
2

(
1 − ρm

1 − ρ

)2

E

min
x∈X

N∑
n=2

ϵnx

︸            ︷︷            ︸
(a)

.

The term (a) above can be bounded above by −
√

N as in the proof of Theorem 4.13

using Khintchine’s inequality. Therefore, using that N = T
m and m = (1 − ρ)−1 we

have

E

min
x∈X

T∑
t=1

f̃t(x)

 ≤ −m−
1
2

(
1 − ρm

1 − ρ

)2 √
N

≤ −(1 − ρ)
1
2

(
1 − ρm

1 − ρ

)2 √
T (1 − ρ)

= −
√

T
(1 − ρm)2

1 − ρ

= −
√

T (1 − ρ)−2(1 − ρm)2

≤ −O
( √

T (1 − ρ)−2
)
,

where the last inequality follows from the assumption that ρ ∈ [1
2 , 1) and the fol-
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lowing argument:

ρm = (1 − (1 − ρ))m = (1 − (1 − ρ))
1

1−ρ ≤
1
e

⇒ (1 − ρm) ≥ 1 −
1
e

⇒ (1 − ρm)2 ≥

(
1 −

1
e

)2

⇒ −(1 − ρm)2 ≤ −

(
1 −

1
e

)2

This completes the proof. ■

4.12 Proofs for Section 4.4: Online Linear Control

We use the following standard facts about matrix norms.

Lemma 4.12.1. Let M,N ∈ Rd×d. Then,

1. ∥M∥2 ≤ ∥M∥F ≤
√

d∥M∥2.

2. ∥MN∥F ≤ ∥M∥2∥N∥F .

Proof. Part 1 can be found in, for example, Golub and Loan [1996, Section 2.3.2].

Letting N j denote the j-th column of N, part 2 follows from

∥MN∥2F =
d∑

j=1

∥MN j∥
2
2 ≤ ∥M∥

2
2

d∑
j=1

∥N j∥
2
2 = ∥M∥

2
2∥N∥

2
F .

This completes the proof. ■
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Lemma 4.12.2. For j ≥ 2, the operator norm ∥A j∥ is bounded above as

∥∥∥A j
∥∥∥ ≤ O

(
κ4ρ

j
2

)
.

Proof. Recall the definition ofH and ∥ · ∥H (Eq. (4.4)). Let

(Y0,Y1, . . . ) = (Y0,GX1, F̃GX2, F̃2GX3, . . . )

be an element ofH with unit norm, i.e.,√√
∞∑

k=0

ξ2
k∥Yk∥

2
X
= 1,

where the weights (ξk) are defined in Eq. (4.5). Note that ξp = 1 for p = 0, 1 and

ξ2
p = ρ

−p+2 for p = 2, 3, . . . . From the definition of the operator A and for j ≥ 2, we

have

A j((Y0,Y1, . . . )) = (0, . . . , 0, F̃ j−1GY0, F̃ jGX1, F̃ j+1GX2, . . . ).

Now we bound ∥A j∥ as follows. By definition of A j and ∥ · ∥H (Eq. (4.4)), and part

2 of Lemma 4.12.1, we have

∥∥∥A j((Y0,Y1, . . . ))
∥∥∥ =

√√
ρ− j+2∥F̃ j−1GY0∥

2
X
+

∞∑
k=1

ρ− j−k+2∥F̃ j+k−1GXk∥
2
X

≤

√√
ρ− j+2∥F̃ j−1G∥22∥Y0∥

2
X
+

∞∑
k=1

ρ− j−k+2∥F̃ j−1∥22∥F̃∥
2
2∥F̃

k−1GXk∥
2
X

≤ ρ−
j
2 ∥F̃ j−1∥2

√√
ρ2∥G∥22∥Y0∥

2
X
+

∞∑
k=1

ρ−k+2∥F̃∥22∥F̃
k−1GXk∥

2
X

= ρ−
j
2 ∥F̃ j−1∥2

√√
ρ2∥G∥22∥Y0∥

2
X
+

∞∑
k=1

ρ−k+2∥F̃∥22∥Yk∥
2
X
.
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Using our assumptions that ∥G∥2 ≤ κ and ∥F̃∥2 ≤ κ2ρ, we have

∥∥∥A j((Y0,Y1, . . . ))
∥∥∥ ≤ ρ− j

2 ∥F̃ j−1∥2

√√
ρ2κ2∥Y0∥

2
X
+

∞∑
k=1

ρ−k+2κ4ρ2∥Yk∥
2
X

≤ ρ−
j
2ρκ2∥F̃ j−1∥2

√√
∥Y0∥

2
X
+

∞∑
k=1

ρ−k+2∥Yk∥
2
X

≤ ρ−
j
2ρκ2κ2ρ j−1

√√
∥Y0∥

2
X
+

∞∑
k=1

ρ−k+2∥Yk∥
2
X

= κ4ρ
j
2

√√
∥Y0∥

2
X
+

∞∑
k=1

ρ−k+2∥Yk∥
2
X
.

Using ρ−1+2 = ρ < 1 for k = 1 in the above sum, the definition of (ξk), and our

assumption that (Y0,Y1 . . . ) has unit norm, we have

∥∥∥A j((Y0,Y1, . . . ))
∥∥∥ ≤ κ4ρ

j
2

√√
ξ2

0∥Y0∥
2
X
+

∞∑
k=1

ξ2
k∥Yk∥

2
X
= κ4ρ

j
2 .

This completes the proof. ■

Lemma 4.12.3. The 2-effective memory capacity is bounded above as

H2 ≤ O
(
κ4(1 − ρ)−

3
2
)
.

Proof. Using Lemma 4.12.2 to bound ∥Ak∥ for k ≥ 2, we have

H2 =

√√
∞∑

k=0

k2∥Ak∥2 ≤ O


√√
∞∑

k=2

k2κ8ρk

 ≤ O
(
κ4(1 − ρ)−

3
2
)
. ■

Lemma 4.12.4. Suppose R : X → R is defined as R(M) = 1
2∥M∥

2
X

. Then, it is 1-strongly-

convex and D = maxM,M̃∈X |R(M) − R(M̃)| ≤ dκ8(1 − ρ)−1.
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Proof. Note that R is 1-strongly-convex by definition. Using part 1 of Lemma 4.12.1

and the definition of X (Eq. (4.2)), we have for all M, M̃ ∈ X,

D = max
M,M̃∈X

|R(M) − R(M̃)|

= max
M,M̃∈X

∣∣∣∣∣12∥M∥2X − 1
2
∥M̃∥2X

∣∣∣∣∣
≤ max

M∈X
∥M∥2X

= max
M∈X

∞∑
j=1

ρ− j∥M[ j]∥2F by Eq. (4.3)

≤ max
M∈X

∞∑
j=1

ρ− jd∥M[ j]∥22 by Lemma 4.12.1

≤

∞∑
j=1

ρ− jdκ8ρ2 j by Eq. (4.2)

≤ dκ8(1 − ρ)−1.

This completes the proof. ■

Lemma 4.12.5. We can bound the norm of the state and control at time t as

max{∥st∥2, ∥ut∥2} ≤ DX = O
(
Wκ8(1 − ρ)−2

)
.
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Proof. We can bound the norm of st and ut using Eqs. (4.6) and (4.7) as

∥st∥2 ≤

∥∥∥∥∥∥∥F̃ t−1s1 +

t−1∑
k=1

k∑
j=1

F̃ t−k−1GM[ j]
k wk− j + wt−1

∥∥∥∥∥∥∥
2

≤ κ2ρt−1 +W +
t∑

k=1

k∑
j=1

κ2ρt−k−1κκ4ρ jW

≤ κ2 +W +Wκ7(1 − ρ)−2

≤ O
(
Wκ7(1 − ρ)−2

)
.

∥ut∥2 ≤

∥∥∥∥∥∥∥Kst +

t∑
j=1

M[ j]
t wt− j

∥∥∥∥∥∥∥
2

≤ O
(
Wκ8(1 − ρ)−2

)
+

t∑
j=1

Wκ4ρ j

≤ O
(
Wκ8(1 − ρ)−2

)
.

Above, we used the assumptions that ρ < 1 and κ,W ≥ 1. This completes the

proof. ■

Lemma 4.12.6. The Lipschitz constant of ft can be bounded above as

L ≤ O
(
L0DXWκ(1 − ρ)−1

)
,

where DX is defined in Lemma 4.12.5.

Proof. Let (M1, . . . ,Mt) and (M̃1, . . . , M̃t) be two sequences of decisions, where Mk

and M̃k ∈ X. Let ht and h̃t be the corresponding histories, and (st, ut) and (s̃t, ũt) be
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the corresponding state-control pairs at the end of round t. We have

∣∣∣ ft(ht) − ft(h̃t)
∣∣∣ = |ct(st, ut) − ct(s̃t, ũt)|

≤ L0DXmax{∥st − s̃t∥2 , ∥ut − ũt∥2},

where the last inequality follows from our assumptions about the functions ct

and Lemma 4.12.5. It suffices to bound the two norms on the right-hand side in

terms of ∥ht − h̃t∥H . For k ∈ {1, . . . , t − 1}, define Z[s]
k = F̃ t−k−1G(M[s]

k − M̃[s]
k ). Us-

ing Eq. (4.6), we have

∥st − s̃t∥2 =

∥∥∥∥∥∥∥
t−1∑
k=1

k∑
j=1

Z[ j]
k wk− j

∥∥∥∥∥∥∥
2

≤

t−1∑
k=1

k∑
j=1

∥∥∥Z[ j]
k wk− j

∥∥∥
2

=

t−1∑
k=1

k∑
j=1

∥∥∥∥ρ− j
2 Z[ j]

k ρ
j
2 wk− j

∥∥∥∥
2

≤

t−1∑
k=1

k∑
j=1

∥∥∥∥ρ− j
2 Z[ j]

k

∥∥∥∥
2

∥∥∥∥ρ j
2 wk− j

∥∥∥∥
2

=

t−1∑
k=1

k∑
j=1

ξ1+t−1−k

∥∥∥∥ρ− j
2 Z[ j]

k

∥∥∥∥
2
ξ−1

1+t−1−k

∥∥∥∥ρ j
2 wk− j

∥∥∥∥
2

≤

√√√ t−1∑
k=1

k∑
j=1

ξ2
t−k

∥∥∥∥ρ− j
2 Z[ j]

k

∥∥∥∥2

2

√√√ t−1∑
k=1

k∑
j=1

ξ−2
t−k

∥∥∥∥ρ j
2 wk− j

∥∥∥∥2

2
(4.11)

=

√√√ t−1∑
k=1

ξ2
t−k

k∑
j=1

∥∥∥∥ρ− j
2 Z[ j]

k

∥∥∥∥2

2︸                         ︷︷                         ︸
(a)

√√√ t−1∑
k=1

ξ−2
t−k

k∑
j=1

∥∥∥∥ρ j
2 wk− j

∥∥∥∥2

2︸                         ︷︷                         ︸
(b)

,

where Eq. (4.11) follows from the Cauchy-Schwarz inequality. The specific choice

of weighted norms on X and H allow us to bound the terms (a) and (b) in terms
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of ∥ht − h̃t∥H . We can bound the term (a) using the definition of Z[s]
k , ∥ · ∥X, and ∥ · ∥H

as √√√ t−1∑
k=1

ξ2
t−k

k∑
j=1

∥∥∥∥ρ− j
2 Z[ j]

k

∥∥∥∥2

2
=

√√√ t−1∑
k=1

ξ2
t−k

k∑
j=1

ρ− j
∥∥∥F̃ t−k−1G(M[ j]

k − M̃[ j]
k )

∥∥∥2

2

≤

√√√ t−1∑
k=1

ξ2
t−k

k∑
j=1

ρ− j
∥∥∥F̃ t−k−1G(M[ j]

k − M̃[ j]
k )

∥∥∥2

F
(4.12)

≤ ∥ht − h̃t∥H , (4.13)

where Eq. (4.12) follows from part 1 of Lemma 4.12.1 and Eq. (4.13) follows from

the definitions of ∥ · ∥X and ∥ · ∥H . Using ∥wt∥2 ≤ W for all rounds t, we can bound

the term (b) as √√√ t−1∑
k=1

ξ−2
t−k

k∑
j=1

∥∥∥∥ρ j
2 wk− j

∥∥∥∥2

2
≤ W

√√√ t−1∑
k=1

ξ−2
t−k

k∑
j=1

ρ j

≤ W

√√
t−1∑
k=1

ξ−2
t−k

ρ(1 − ρk+1)
1 − ρ

≤ W(1 − ρ)−1, (4.14)

where Eq. (4.14) follows from the definition of (ξk) (Eq. (4.5)). Substitut-

ing Eqs. (4.13) and (4.14) in Eq. (4.11), we have

∥st − s̃t∥2 ≤ W(1 − ρ)−1∥ht − h̃t∥H .

Similarly,

∥ut − ũt∥ =

∥∥∥∥∥∥∥K(st − s̃t) +
t∑

j=1

(M[ j]
t − M̃[ j]

t )wt− j

∥∥∥∥∥∥∥
2

≤ O
(
Wκ(1 − ρ)−1

∥∥∥ht − h̃t

∥∥∥
H

)
,
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where the last inequality follows from our assumption that ∥K∥2 ≤ κ and the above

inequality for ∥st − s̃t∥2. This completes the proof. ■

Lemma 4.12.7. The Lipschitz constant of f̃t can be bounded above as

L̃ ≤ O
(
L0DXWκ5(1 − ρ)−

3
2
)
,

where DX is defined in Lemma 4.12.5.

Proof. Using Lemma 4.12.2 that bounds ∥Ak∥, we have√√
∞∑

k=0

∥∥∥Ak
∥∥∥2
≤ O

(
κ4(1 − ρ)−

1
2
)
.

Using Theorem 4.1 that bounds L̃ in terms of L and the above, we have

L̃ ≤ O
(
Lκ4(1 − ρ)−

1
2
)
≤ O

(
L0DXWκ5(1 − ρ)−

3
2
)
,

where the last inequality follows from Lemma 4.12.6. ■

Now we restate and prove Theorem 4.8.

Theorem 4.8. Consider the online linear control problem as defined in Section 4.4.1.

Suppose the decisions in round t are chosen using Algorithm 4. Then, the upper bound on

the policy regret is

RegOLC
T (FTRL) = O

(
L0W2

√
Td

1
2 κ17(1 − ρ)−4.5

)
. (4.8)
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Proof. Using Theorem 4.2 and the above lemmas, we can upper bound the policy

regret of Algorithm 4 for the online linear control problem by

O

√D
α

T LL̃H2


= O

(√
dκ8(1 − ρ)−1 T

(
L0W2κ9(1 − ρ)−3)2 κ4(1 − ρ)−

1
2 κ4(1 − ρ)−

3
2

)
= O

(
L0W2

√
Td

1
2 κ17(1 − ρ)−4.5

)
.

This completes the proof. ■

Existing Regret Bound. The upper bound on policy regret for the online linear

control problem in existing work is given in Agarwal et al. [2019b, Theorem 5.1].

The theorem statement only shows the dependence on L̃,W, and T . The depen-

dence on d, κ, and ρ can be found in the details of the proof. Below we give a

detailed accounting of all of these terms in their regret bound.

To simplify notation let γ = 1 − ρ. Agarwal et al. [2019b] define

H =
κ2

γ
log(T ) and C =

W(κ2 + HκBκ
2a)

γ(1 − κ2(1 − γ)H+1)
+
κBκ

3W
γ

.

The value of a is not specified in Theorem 5.1. However, from Theorem 5.3 and

the definition ofM in Algorithm 1 their paper, we can infer that a = κBκ
3.

The final regret bound is obtained by summing Equations 5.1, 5.3, and 5.4.

Given the definition of H above, we have that

(1 − γ)H+1 ≤ exp(−κ2 log T ) = T−κ
2
.
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So, the dominant term in the regret bound is Equation 5.4, which is

O
(
L0WCd

3
2 κ2

Bκ
6H2.5γ−1

√
T
)
.

Substituting the values of H and C from above and collecting terms, we have

that the upper bound on policy regret in existing work [Agarwal et al., 2019b,

Theorem 5.1] is

O
(
L0Wd

3
2
√

T log(T )2.5κ2
Bκ

11γ−3.5C
)

= O
(
L0Wd

3
2
√

T log(T )2.5κ2
Bκ

11γ−3.5
(

W(κ2 + HκBκ
2a)

γ(1 − κ2(1 − γ)H+1)
+
κBκ

3W
γ

))
= O

(
L0Wd

3
2
√

T log(T )2.5κ2
Bκ

11γ−3.5
(

Wκ2

γ(1 − κ2(1 − γ)H+1)
+

Wκ2
Bκ

7 log(T )
γ2(1 − κ2(1 − γ)H+1)

+
κBκ

3W
γ

))
= O

(
L0W2d

3
2
√

T log(T )2.5κ2
Bκ

13γ−4.5(1 − κ2(1 − γ)H+1)−1
)

+ O
(
L0W2d

3
2
√

T log(T )3.5κ4
Bκ

18γ−5.5(1 − κ2(1 − γ)H+1)−1
)

+ O
(
L0W2d

3
2
√

T log(T )2.5κ3
Bκ

14γ−4.5
)

= O
(
L0W2d

3
2
√

T log(T )3.5κ4
Bκ

18γ−5.5
)
.

Above we used that limT→∞(1 − κ2(1 − γ)H+1)−1 = 1 to simplify the expressions.

Therefore, the upper bound on policy regret for the online linear control problem

in existing work is

O
(
L0W2d

3
2
√

T log(T )3.5κ4
Bκ

18γ−5.5
)
. (4.15)

Our regret bound in Theorem 4.8 is

O
(
L0W2

√
Td

1
2 κ17(1 − ρ)−4.5

)
.
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Therefore, our bound improves upon existing work by a factor of

O
(
log(T )3.5dκ5(1 − ρ)−1

)
,

where we note that we assumed κB = κ in our work for simplicity and we defined

γ = 1 − ρ.

4.13 Proofs for Section 4.4: Online Performative Prediction

Before formulating the online performative prediction problem in our OCO with

unbounded memory framework, we state the definition of 1-Wasserstein distance

that we use in our regret analysis. Informally, the 1-Wasserstein distance is a mea-

sure of the distance between two probability measures.

Definition 4.13.1 (1-Wasserstein Distance). Let (Z, d) be a metric space. Let P(Z)

denote the set of Radon probability measures ν on Z with finite first moment.

That is, there exists z′ ∈ Z such that Ez∼ν[d(z, z′)] < ∞. The 1-Wasserstein distance

between two probability measures ν, ν′ ∈ P(Z) is defined as

W1(ν, ν′) = sup{Ez∼ν[ f (z)] − Ez∼ν′[ f (z)]},

where the supremum is taken over all 1-Lipschitz continuous functions f : Z → R.

Lemma 4.13.1. The operator norm ∥As∥ is bounded above as

∥As∥ ≤ O (ρs) .
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Proof. Recall the definition ofH and ∥ · ∥H . Let

(y0, y1, . . . ) = (x0, ρx1, ρ
2x2, . . . )

be an element ofH with unit norm, i.e.,

∞∑
k=0

∥yk∥ = 1.

From the definition of the operator A, we have

As((y0, y1, . . . )) = (0, . . . , 0, ρsx0, ρ
s+1x1, . . . ).

Now we bound ∥As∥ as follows. By definition of As and ∥ · ∥H , we have

∥As((y0, y1, . . . ))∥ =
∞∑

k=0

ρs+k∥xk∥ = ρ
s
∞∑

k=0

ρk∥xk∥ = ρ
s
∞∑

k=0

∥yk∥ = ρ
s. ■

Lemma 4.13.2. The 1-effective memory capacity is bounded above as

H2 ≤ O
(
(1 − ρ)−2

)
.

Proof. Using Lemma 4.13.1 to bound ∥Ak∥, we have

H1 =

∞∑
k=0

k∥Ak∥ =

∞∑
k=0

kρk ≤ O
(
(1 − ρ)−2

)
. ■

Lemma 4.13.3. Suppose R : X → R is defined as R(x) = 1
2∥x∥

2
X

. Then, it is 1-strongly-

convex and D = maxx,x̃∈X |R(x) − R(x̃)| ≤ D2
X

.

Proof. Note that R is 1-strongly-convex by definition. By the assumption that

∥x∥X ≤ DX for all x ∈ X, we have that D ≤ D2
X

. ■
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Lemma 4.13.4. The Lipschitz constant of ft can be bounded above as

L ≤ O
(
L0

1 − ρ
ρ
∥F∥2

)
.

Proof. Let (x1, . . . , xt) and (x̃1, . . . , x̃t) be two sequences of decisions, where xk, x̃k ∈

X. Let ht and h̃t be the corresponding histories, and pt and p̃t be the corresponding

distributions at the end of round t. We have

∣∣∣ ft(ht) − ft(h̃t)
∣∣∣

=
∣∣∣Ez∼pt [lt(xt, z)] − Ez∼ p̃t [lt(x̃t, z)]

∣∣∣
=

∣∣∣Ez∼pt [lt(xt, z)] − Ez∼pt [lt(x̃t, z)] + Ez∼pt [lt(x̃t, z)] − Ez∼ p̃t [lt(x̃t, z)]
∣∣∣

≤ L0∥xt − x̃t∥2 + L0W1(pt, p̃t),

where the last inequality follows from the assumptions about the functions lt and

the definition of the Wasserstein distance W1. By definition of pt (Eq. (4.9)), we

have

W1(pt, p̃t) ≤
t−1∑
k=1

1 − ρ
ρ

ρk∥F∥2∥xt−k − x̃t−k∥2

≤
1 − ρ
ρ
∥F∥2∥ht − h̃t∥H ,

where the last inequality follows from the definition of ∥ · ∥H . Therefore, L ≤

L0
1−ρ
ρ
∥F∥2. ■

Lemma 4.13.5. The Lipschitz constant of ft can be bounded above as

L̃ ≤ O
(
L0

1
ρ
∥F∥2

)
.
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Proof. Using Lemma 4.13.1 that bounds ∥Ak∥, we have

∞∑
k=0

∥Ak∥ = (1 − ρ)−1.

Using Theorem 4.1 that bounds L̃ in terms of L and the above, we have

L̃ ≤ O
(
L(1 − ρ)−1

)
= O

(
L0

1
ρ
∥F∥2

)
,

where the last equality follows from Lemma 4.13.4. ■

Now we restate and prove Theorem 4.9.

Theorem 4.9. Consider the online performative prediction problem as defined in Sec-

tion 4.4.2. Suppose the decisions in round t are chosen using Algorithm 4. Then, the

upper bound on the policy regret is

RegOPP
T (FTRL) = O

(
DXL0

√
T∥F∥2(1 − ρ)−

1
2ρ−1

)
.

Proof. Using Theorem 4.2 and the above lemmas, we can upper bound the policy

regret of Algorithm 4 for the online performative prediction problem by

O

√D
α

T LL̃H1

 = O
(
DXL0∥F∥2(1 − ρ)−

1
2ρ−1
√

T
)
.

This completes the proof. ■

We note that the upper bound can be improved by defining a weighted norm

onH similar to the approach in Section 4.12. However, here we present the looser

anaysis for simplicity of exposition.
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4.14 Proofs for Section 4.6: Mini-Batch FTRL

We restate and prove Theorem 4.10.

Theorem 4.10. Consider an online convex optimization with unbounded memory prob-

lem specified by (X,H , A, B). Let the regularizer R : X → R be α-strongly-convex and

satisfy |R(x) − R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 5 with batch size S and step-size η

satisfies

RegOCO−UM
T (Mini − Batch FTRL) ≤

S D
η
+ η

T L̃2

α
+ η

T LL̃H1

Sα
.

If η =
√

αS D

T L̃
(

LH1
S +L̃

) , then

RegOCO−UM
T (Mini − Batch FTRL) ≤ O

√D
α

T
(
LL̃H1 + S L̃2

) .
Proof. For simplicity, assume that T is a multiple of S . Otherwise, the same proof

works after replacing T
S with ⌈T

S ⌉. Let x∗ ∈ arg minx∈X
∑T

t=1 f̃t(x). Note that we can

write the regret as

RegT (Mini − Batch FTRL) =
T∑

t=1

ft(ht) −min
x∈X

T∑
t=1

f̃t(x)

=

T∑
t=1

ft(ht) − f̃t(xt)︸               ︷︷               ︸
(a)

+

T∑
t=1

f̃t(xt) − f̃t(x∗)︸               ︷︷               ︸
(b)

.

We can bound the term (b) using Theorem 2.1 for mini-batches [Dekel et al., 2012,

Altschuler and Talwar, 2018, Chen et al., 2020] by

S D
η
+ η

T L̃2

α
.
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It remains to bound term (a). Let N = T/S denote the number of batches and

Tn = {(n − 1)S + 1, . . . , nS } denote the rounds in batch n ∈ [N]. We can write

T∑
t=1

ft(ht) − f̃t(xt) =
T∑

t=1

ft

 t−1∑
k=0

AkBxt−k

 − ft

 t−1∑
k=0

AkBxt

 by Definition 4.2.1

≤ L
T∑

t=1

∥∥∥∥∥∥∥
t−1∑
k=0

AkBxt−k −

t−1∑
k=0

AkBxt

∥∥∥∥∥∥∥ by Assumption A4

≤
T
S

L
∑
t∈TN

∥∥∥∥∥∥∥
t−1∑
k=0

AkBxt−k −

t−1∑
k=0

AkBxt

∥∥∥∥∥∥∥︸                                 ︷︷                                 ︸
(c)

,

where the last inequality follows because of the following. Consider rounds

t1 = b1S + r and t2 = b2S + r for b1 < b2 and r ∈ [S ]. Then, ∥ht1 −
∑t1−1

k=0 AkBxt1∥ ≤

∥ht2 −
∑t2−1

k=0 AkBxt2∥ because the latter sums over more terms in its history and deci-

sions in consecutive batches have distance bounded above by ηL̃/α (Theorem 2.1).

Therefore, it suffices to show that term (c) is upper bounded by ηL̃H1/α. We have

∑
t∈TN

∥∥∥∥∥∥∥
t−1∑
k=0

AkBxt−k −

t−1∑
k=0

AkBxt

∥∥∥∥∥∥∥ ≤∑
t∈TN

t−1∑
k=0

∥∥∥AkBxt−k − AkBxt

∥∥∥
≤

∑
t∈TN

t−1∑
k=0

∥Ak∥∥B∥∥xt−k − xt∥

≤
∑
t∈TN

t−1∑
k=0

∥Ak∥∥xt−k − xt∥ by Assumption A2.
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Since the same decision xn is chosen in all rounds of batch n, we can reindex and

rewrite

∑
t∈TN

∥∥∥∥∥∥∥
t−1∑
k=0

AkBxt−k −

t−1∑
k=0

AkBxt

∥∥∥∥∥∥∥ ≤∑
t∈TN

t−1∑
k=0

∥Ak∥∥xt−k − xt∥

≤

S−1∑
o=0

N−1∑
n=1

S∑
s=1

∥A(N−n−1)S+s+o∥∥xN − xn∥

≤ η
L̃
α

S−1∑
o=0

N−1∑
n=1

S∑
s=1

(N − n)∥A(N−n−1)S+s+o∥

= η
L̃
α

S−1∑
o=0

N−1∑
n=1

S∑
s=1

n∥A(n−1)S+s+o∥,

where the last inequality follows from bounding the distance between decision in

consecutive batches Theorem 2.1 and the triangle inequality. Expanding the triple

sum yields

S−1∑
o=0

N−1∑
n=1

S∑
s=1

n∥A(n−1)S+s+o∥

≤ ∥A∥ + · · · + ∥AS ∥ + 2∥AS+1∥ + · · · + 2∥A2S ∥ + 3∥A2S+1∥ + · · · + 3∥A3S ∥ + . . .

+ ∥A2∥ + · · · + ∥AS+1∥ + 2∥AS+2∥ + · · · + 2∥A2S+1∥ + 3∥A2S+2∥ + · · · + 3∥A3S+1∥ + . . .

...

+ ∥AS ∥ + · · · + ∥A2S−1∥ + 2∥A2S ∥ + · · · + 2∥A3S−1∥ + 3∥A3S ∥ + · · · + 3∥A4S−1∥ + . . . ,

where each line above corresponds to a value of o ∈ {0, . . . , S −1}. Adding up these

terms yields H1. This completes the proof. ■

Note that Theorem 4.10 only provides an upper bound on the policy regret for

the general case. Unlike Algorithm 4, it is unclear how to obtain a stronger bound
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depending on Hp for the case of linear sequence dynamics with the ξ-weighted

p-norm for p > 1. The above proof can be specialized for this special case, similar

to the proofs of Theorem 4.1 and Lemma 4.10.1, to obtain

∑
t∈TN

∥∥∥∥∥∥∥
t−1∑
k=0

AkBxt−k −

t−1∑
k=0

AkBxt

∥∥∥∥∥∥∥ ≤ η L̃
α

S−1∑
o=0

N−1∑
n=1

S∑
s=1

(
n∥A(n−1)S+s+o∥

)p


1
p

and

S−1∑
o=0

N−1∑
n=1

S∑
s=1

(
n∥A(n−1)S+s+o∥

)p


1
p

≤
(
∥A∥p + · · · + ∥AS ∥p + 2p∥AS+1∥p + . . . 2p∥A2S ∥p + 3p∥A2S+1∥p + . . .

) 1
p

+
(
∥A2∥p + · · · + ∥AS+1∥p + 2p∥AS+2∥p + . . . 2p∥A2S+1∥p + 3p∥A2S+2∥p + . . .

) 1
p

...(
∥AS ∥p + · · · + ∥A2S−1∥p + 2p∥A2S ∥p + . . . 2p∥A3S−1∥p + 3p∥A3S ∥p + . . .

) 1
p
.

The above expression cannot be easily simplified to O(Hp). However, for the spe-

cial case of OCO with finite memory, which follows linear sequence dynamics

with the 2-norm, we can do so by leveraging the special structure of the linear

operator Afinite,m.

Theorem 4.11. Consider an online convex optimization with finite memory problem with

constant memory length m specified by (X,H = Xm, Afinite,m, Bfinite,m). Let the regularizer

R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X. Algorithm 5

with batch size m and step-size η =
√

αmD

T L̃
(
Lm

1
2 +L̃

) satisfies

RegOCO−UM
T (Mini − Batch FTRL) ≤ O

√D
α

T LL̃m
3
2

 ≤ O

m √
D
α

T L2

 .
Furthermore, the decisions xt switch at most T

m times.
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Proof. Given the proof of Theorem 4.10 and the above discussion, it suffices to

show that
S−1∑
o=0

N−1∑
n=1

S∑
s=1

(
n∥A(n−1)S+s+o∥

)2


1
2

≤ H2 = m
3
2 .

Recall that ∥Ak
finite∥ = 1 if k ≤ m and 0 otherwise. Using this and S = m, we have

that the above sum is at most
√

m+
√

m − 1+ · · ·+
√

1 = O
(
m

3
2

)
. This completes the

proof. ■
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Part II

Analyzing Interactions Offline via

Network Science
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CHAPTER 5

RETRIEVING TOP WEIGHTED TRIANGLES IN GRAPHS

In the previous part of the dissertation, we studied how a learner should make

decisions while interacting with an environment through the perspective of online

decision-making. In this part of the dissertation, we change gears and study how

a learner can analyze past interactions offline after they have occurred through

the perspective of network science. In many applications past interactions can be

projected onto a weighted graph. For example, consider a user “listening session”

on the music streaming platform Spotify [Kumar et al., 2020]. One possible pro-

jection of this data is the following: the nodes are songs, and there is a weighted

edge between two songs with the weight equal to the number of times the two

songs have co-appeared in a listening session. After building such graphs from

interaction data, the learner can get insights into their rich structure by using tools

from network science.

Pattern counting in graphs is a fundamental primitive for many network anal-

ysis tasks and a number of methods have been developed for scaling subgraph

counting to large graphs. Many real-world networks, such as the one described

above, carry a natural notion of strength of connection between nodes, which are

often modeled by a weighted graph. However, existing scalable graph algorithms

for pattern mining are designed for unweighted graphs. In this chapter we de-

velop a suite of deterministic and randomized sampling algorithms that enable

the fast discovery of the 3-cliques (triangles) with the largest weight in a graph,
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where weight is measured by a generalized mean of a triangle’s edge weights. For

example, one of our proposed algorithms can find the top-1000 weighted triangles

of a weighted graph with billions of edges (the Spotify graph from above) in thirty

seconds on a commodity server. This is orders of magnitude faster than existing

“fast” enumeration schemes. Our methods thus open the door towards scalable

pattern mining in weighted graphs and provide new tools for analyzing interac-

tions offline. This chapter is based on joint work with Paul Liu, Moses Charikar,

and Austin Benson [Kumar et al., 2020].

5.1 Introduction

Small subgraph patterns, also called graphlets or network motifs, have proven

fundamental for the understanding of the structure of complex networks [Milo

et al., 2002, 2004, Benson et al., 2016]. One of the simplest non-trivial subgraph

patterns is the triangle (3-clique), and the basic problem of triangle counting and

enumeration has been studied extensively from theoretical and practical perspec-

tives [Avron, 2010, Eden et al., 2017, Kolda et al., 2013, Berry et al., 2015, Ste-

fani et al., 2017a]. These developments are often driven by the desire to scale

graph counting to large networks, where performing computations naively is

intractable. The focus on triangles is in part spurred by the widespread use of

the pattern in graph mining applications, including community detection [Berry

et al., 2011, Gleich and Seshadhri, 2012, Rohe and Qin, 2013], network compari-

son [Contractor et al., 2006, Mahadevan et al., 2007, Pržulj, 2007], representation
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learning [Henderson et al., 2012, Rossi and Ahmed, 2015], and generative model-

ing [Robins et al., 2007, Robles-Granda et al., 2016]. Additionally, triangle-based

network statistics such as the clustering coefficient are used extensively in the so-

cial sciences [Durak et al., 2012, Lawrence, 2006, Burt, 2007, Welles et al., 2010].

Nearly all of the algorithmic literature on scalable counting or enumeration

of triangles focuses on unweighted graphs. However, many real-world network

datasets have a natural notion of weight attached to the edges of the graph [Barrat

et al., 2004]. For example, edge weights can capture tie strength in social net-

works [Wasserman and Faust, 1994], traffic flows in transportation networks [Jia

et al., 2019], or co-occurrence counts in projections of bipartite networks [Xu et al.,

2014]. Such edge weights offer additional insight into the structure of these net-

works. Moreover, edge weights can enrich the types of small subgraph patterns

that are used in analysis. For instance, the network clustering coefficient has been

generalized to account for edge weights [Opsahl and Panzarasa, 2009, Onnela

et al., 2005b]; in these cases, a triangle is given a weight derived from the weights

of its constituent edges. Roughly speaking, the weight of a triangle is typically

some combination of the arithmetic mean, geometric mean, minimum and max-

imum of the edge weights of the triangle. All this being said, we still lack the

algorithmic tools for fast analysis of modern large-scale weighted networks, espe-

cially in the area of weighted triangle listing and counting.

In applications of weighted triangles in this big data regime, it can often suffice

to retrieve only the k triangles of largest weight for some suitable k. For example,

174



in large online social networks, the weight of an edge could reflect how likely it is

for users to communicate with each other, and top weighted triangles and cliques

in this network could be used for group chat recommendations. In such a scenario,

we would typically only be interested in a small number of triangles whose nodes

are very likely to communicate with each other as opposed to finding all triangles

in the graph.

Another application for finding top-weighted triangles appears in prediction

tasks involving higher-order network interactions. The goal of the “higher-order

link prediction” problem is to predict which new groups of nodes will simulta-

neously interact (such as which group of authors will co-author a scientific paper

in the future, which group of songs will co-appear in a listening session in the

future, etc.) [Benson et al., 2018]. In this setting, existing algorithms first create

a weighted graph where an edge weight is the number of prior interactions that

involve the two end points. Then, they predict that the top-weighted triangles in

this weighted graph will appear as higher-order interactions in the future. (Here,

weight is measured by a generalized mean of the triangle’s edge weights.) Again,

it is not necessary to find all triangles since only the top predictions will be acted

upon. Existing triangle enumeration algorithms do not scale to massive graphs for

these problems. Therefore, we need efficient algorithms for retrieving triangles in

large weighted graphs.

In this work we address the problem of enumerating the top-weighted trian-

gles in a weighted graph. Formally, let G = (V, E,w) be a simple, undirected graph
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with strictly positive edge weights w. Let the weight of a triangle in G be the

generalized p-mean of its consitutent edge weights. That is, if a triangle defined

by vertices a, b, and c has edge weights wab,wbc, and wac, then the weight of the

triangle is

mp(a, b, c) =
(
1
3

(wp
ab + wp

bc + wp
ac)

) 1
p

. (5.1)

Given G and an integer parameter k, we develop algorithms to extract the top-k

triangles in G. We use top-k to refer to the triangles having the k largest weights

or, in other words, the k-heaviest triangles. Note that some special cases of the

p-mean include arithmetic mean (p = 1), geometric mean (p = 0), harmonic mean

(p = −1), minimum (p = −∞) and maximum (p = ∞). This family of means is

more general and includes those previously examined by Opsahl and Panzarasa

[2009] and Benson et al. [2018].

At a high level, we develop two families of algorithms for extracting top-

weighted triangles. The first family of algorithms (Section 5.3) is deterministic

and optimized for extracting top-k weighted triangles for small k (typically up to

a few tens of thousands). These algorithms take advantage of the inherent heavy-

tailed edge weight distribution common in real-world networks. In the most gen-

eral case we show that under a modified configuration model, these algorithms

are even “distribution-oblivious”. That is, they can automatically compute opti-

mal hyper-parameters for the algorithm for a wide range of input graph distribu-

tions. Additionally, the algorithmic analysis is done in a continuous sense (rather

than discrete), which may be of independent interest. The second family of algo-
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rithms (Section 5.4) is randomized and aims to extract a large number of heavy

triangles (not necessarily the top-k). We show that this family of sampling algo-

rithms is closely connected to the prior sampling algorithms for counting triangles

on unweighted graphs [Seshadhri et al., 2014]. Furthermore, we show that these

sampling algorithms are easily parallelizable.

We find that a carefully tuned parallel implementation of our deterministic

algorithm performs well across a broad range of large weighted graphs, even out-

performing the fast randomized sampling algorithms that are not guaranteed to

enumerate all of the top-weighted triangles. A parallel implementation of our

algorithm running on a commodity server with 64 cores can find the top 1000

weighted triangles in under 10 seconds on several graphs with hundreds of mil-

lions of weighted edges and in 30 seconds on a graph with nearly two billion

weighted edges. We compare this with the off-the-shelf alternative approach,

which would be an intelligent triangle enumeration algorithm that maintains a

heap of the top-weighted triangles. Our proposed algorithms are orders of mag-

nitude faster than this standard approach.

5.2 Additional Related Work

Due to its wide applicability, there is a plethora of work on unweighted triangle-

related algorithms. In the context of enumeration algorithms, recent attention has

focused on enumeration in the distributed and parallel setting [Chu and Cheng,
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2011, Suri and Vassilvitskii, 2011, Arifuzzaman et al., 2013, Rahman and Hasan,

2013]. These algorithms typically employ an optimized brute force method on

each machine [Latapy, 2008, Berry et al., 2010] and the main algorithmic difficulty

is in deciding how to partition the data amongst the machines. Although each

machine employs a brute force algorithm, early research shows that these algo-

rithms run in time almost linear in the number of edges so long as the degeneracy

of the graph is small [Chiba and Nishizeki, 1985]. This has led to efficient enu-

meration algorithms [Berry et al., 2015, Suri and Vassilvitskii, 2011]. For compar-

ison with our methods, we modify such a fast enumeration method (specifically

NodeIterator++ [Suri and Vassilvitskii, 2011]) to retain the top-k weighted trian-

gles. Although enumeration algorithms are agnostic to edge weights, we note

that the sheer number of triangles in massive graphs renders such an approach

prohibitively expensive.

When enumeration becomes intractable, triangle-related algorithms focus in-

stead on merely triangle counts or graph statistics such as clustering coefficients.

Again, these statistics are in the unweighted regime as only the number of tri-

angles is considered. There is a progression of sampling methods depending on

what kind of structures one is sampling from the graph. At a basic level, edge-

based sampling methods sample an edge and count all incident triangles on that

edge. So-called wedge-based methods sample length-2 paths [Kolda et al., 2013]

and this concept has been generalized for counting 4-cliques [Jha et al., 2015]. Fi-

nally, tiered-sampling combines sampling of arbitrary subgraphs to count the oc-

currence of larger graphs (with a focus on 4-cliques and 5-cliques) [Stefani et al.,
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2017b].

Beyond enumeration and sampling, there are numerous other methods for

triangle-based algorithms, such as graph sparsification methods [Tsourakakis

et al., 2009, Pagh and Tsourakakis, 2012, Etemadi et al., 2016], spectral and matrix

based methods [Tsourakakis, 2008, Alon et al., 1997], and a multitude of meth-

ods for computing clustering and closure coefficients [Rahman and Hasan, 2014,

Seshadhri et al., 2014, Schank and Wagner, 2005, Yin et al., 2019]. For a deeper

background on triangle counting, we refer the reader to the overview of Hasan

and Dave [2018].

All of the above methods are for triangles. These ideas have been ex-

tended in several ways. There are parallel clique enumeration methods [Danisch

et al., 2018], and sampling methods for estimating counts of more general mo-

tifs [Ahmed et al., 2014, Jain and Seshadhri, 2017, Bressan et al., 2017] and motifs

with temporal structure [Liu et al., 2019]. Still, these methods do not work for

weighted graphs, where subgraph patterns appear in generalizations of the clus-

tering coefficient [Onnela et al., 2005a] as well as in graph decompositions [Soufi-

ani and Airoldi, 2012].
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5.3 Deterministic Algorithms

In this section we develop two types of deterministic algorithms for finding the

top-k weighted triangles in a graph. Recall that the weight of a triangle is given

by the generalized p-mean of its edge weights (Eq. (5.1)). A simple and robust

baseline algorithm is to employ a fast triangle enumeration algorithm for un-

weighted graphs, compute the weight of each triangle, and pick out the top-k

weighted triangles. (To save memory we can also maintain a heap of the top-

weighted triangles instead.) In our experiments we use an optimized sequential

version of NodeIterator++[Berry et al., 2015, Suri and Vassilvitskii, 2011, Chiba

and Nishizeki, 1985], which is the basis for many parallel enumeration algorithms.

We call this a “brute-force” approach. We note that there faster, parallel versions

of this approach. However, as the results in Section 5.5 show, even a brute force

enumerator with perfect parallelism would require over 2000 cores (or machines)

to beat our sequential deterministic algorithm in certain cases.

The brute force approach is agnostic to the distribution of edge weights. How-

ever, intuitively we expect that triangles of large weight are formed by edges of

large weight. We exploit this intuition below to develop faster algorithms. At

a high level, our main deterministic algorithm dynamically partitions edges into

“heavy” and “light” classes based on edge weight. Following this partition, it

finds triangles adjacent to the heavy edges until the top-k heaviest are identified.
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5.3.1 A Simple Heavy-light Algorithm

As a precursor to our dynamic algorithm, consider a simple threshold-based al-

gorithm (Algorithm 6) as follows. Given a threshold τ, partition the edges into a

“heavy” set H = {e | we > τ} and a “light” set L = E \ H. For a large threshold τ,

we expect most of the edges to be in the “light” class. Thus, the subgraph G[H]

induced by H is small and we may run any enumeration algorithm on it to get a

collection of heavy triangles. This is not by itself guaranteed to find the heaviest

triangles—edges in H might only appear in triangles with edges in L. However,

we find that in practice many of the heaviest triangles have all of their edges in

H. We note that with no additional asymptotic cost, we can use existing triangle

enumeration algorithms to check for triangles with only one or two heavy edges

(and the rest light). Unfortunately, the constant factor slowdowns substantially

increase the running time on real-world graphs.

Algorithm 6: Static Heavy-light Algorithm.
Input: Weighted graph G = (V, E,w), scaling p, number of triangles k.

1 Set H = {e ∈ E : we > τ}.
2 Set T = {all triangles formed by edges in H}.
3 return k triangles in T with largest p-mean weight.

This simple algorithm vastly outperforms the brute force approach in practice

and can always find the top-weighted triangles given a proper threshold. There-

fore, this method serves as a robust baseline. Nonetheless, there are two issues

with the static heavy-light algorithm. First, it relies on a single threshold τ to par-

tition the edges into the light and heavy sets. This leads to enumerating many

181



more triangles than necessary. Second, it is difficult to know what an appropriate

value for τ may be given no prior knowledge of the input graph. In the rest of this

section we develop a dynamic variant to deal with these issues.

5.3.2 A Dynamic Heavy-light Algorithm

In the rest of Section 5.3 we use wi to refer to the weight of the i-th heaviest edge.

This is in contrast to our usual notation of using wi to denote the weight of edge i.

The meaning should be clear from the context.

To understand the motivation behind our dynamic heavy-light algorithm (Al-

gorithm 7), consider the following. Suppose we preprocess the edges and sort

them by decreasing weight. That is, E = {e0, e1, . . . , em−1}, where w0 ≥ w1 ≥ . . .wm−1.

Consider a partition of the edges into three sets based on edge weight:

• S = {e0, . . . , eh}, i.e., “super-heavy” edges that have the h + 1 largest weights.

• H = {eh+1, . . . , el}, i.e., “heavy” edges that have the next l − h largest weights.

• L = {el+1, . . . , em−1}, i.e., the remaining “light” edges that are neither “heavy”

nor “super-heavy”.

(As we explain later, Algorithm 7 adjusts this partition dynamically by changing

the indices h and l; hence the name “dynamic” heavy-light.) Any triangle can be

broken down into a combination of “super-heavy”, “heavy”, and “light” edges.
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As a first order approximation, we intuitively expect the heaviest class of trian-

gles to have three super-heavy edges, the next heaviest to have two super-heavy

edges and one heavy edge, and so on down to the case of three light edges. Fur-

thermore, if we consider edges and enumerate triangles in a specific order, then

we can obtain an upper bound on the weight of the heaviest triangle we have

not yet enumerated. For example, suppose we have enumerated all triangles con-

taining three super-heavy edges. Then the heaviest triangle not yet enumerated

must have at least one edge from either H or L. This upper bounds the p-th power

of the weight of that triangle to be 1
3

(
2wp

0 + wp
h

)
. Algorithm 7 dynamically adjusts

the partition of the edges and enumerates triangles in a way so that this bound

decreases as quickly as possible.

The while loop in Algorithm 7 runs until the algorithm enumerates k triangles

above a dynamically decreasing threshold τ = wp
h + 2wp

l . Each iteration of the

while loop consists of two steps: (i) updating the partition by moving an edge

to a heavier class; and (ii) enumerating triangles whose edges come from certain

classes. The constant αp determines how edges get promoted to heavier classes.

We will specify this constant later in our analysis, where we use it to optimize the

expected decrease in the threshold τ. At the end of each iteration, the algorithm

maintains a loop invariant that it has enumerated all triangles with at least one

super-heavy edge or at least two heavy edges. This invariant is what allows us

to obtain a bound τ on the heaviest triangle not yet enumerated. We now prove

these properties formally and show that Algorithm 7 correctly returns the top-k

triangles provided the graph has at least k triangles.
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Algorithm 7: Dynamic Heavy-light Algorithm.
Input: Weighted graph G = (V, E,w), scaling p, number of triangles k,

parameter αp.
1 Sort E in decreasing order of weight.
2 Set threshold τ = ∞.
3 Set triangle set T = ∅.
4 Set partitions S = H = ∅ and L = E.
5 Set edge pointers h = l = −1.
// We take the convention that e−1 = ∞.

6 while there are < k triangles above weight τ in T do
7 if wαp

l+1 > wh+1 then
8 Move el+1 from L to H.
9 Y = triangles formed by el+1 and 2 edges from S ∪ H.

10 Z = triangles formed by el+1, 1 edge from L and 1 edge from S ∪ H.
11 T = T ∪ (Y ∪ Z).
12 l = l + 1.
13 else
14 Move eh+1 from H to S .
15 Y = triangles formed by eh and 2 edges from L.
16 T = T ∪ Y .
17 h = h + 1.
18 end
19 Update threshold τ = wp

h + 2wp
l .

20 end
21 return k triangles in T with largest p-mean weight.

Lemma 5.3.1. Algorithm 7 maintains the loop invariant that it has enumerated all trian-

gles with at least one super-heavy edge or at least two heavy edges.

Proof. The invariant is true before the while loop starts: all edges are light, so there

are no triangles with at least one super-heavy edge or at least two heavy edges.

Suppose the invariant is true at the start of an iteration of the while loop. We

consider two cases.
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Suppose wαp

l+1 > wh+1. Then, edge el+1 moves from L to H (Line 7), and all trian-

gles including el+1 and at least one edge from S ∪ H are enumerated. Combining

this with the assumption that the invariant was true at the start of the iteration,

we have that all triangles with at least one super-heavy edge or at least two heavy

edges are enumerated.

Suppose wαp

l+1 ≤ wh+1. Then, edge eh+1 moves from H to S (Line 13), and all

triangles including eh+1 and two edges from L are enumerated. Again, combining

this with the assumption that the invariant was true at the start of the iteration,

we have that all triangles with at least one super-heavy edge or at least two heavy

edges are enumerated. ■

Lemma 5.3.2. Algorithm 7 maintains the loop invariant that the threshold τ = wp
h + 2wp

l

is an upper bound on the weight of the heaviest triangle not yet enumerated.

Proof. Consider a triangle ∆ with weight at least wp
h + 2wp

l . By case analysis, there

must either exist one edge with weight at least wh or two edges with weight at least

wl. This means that either one edge is from S or two edges are from H. In either

case, Lemma 5.3.1 ensures that ∆ must have been enumerated. In fact, a similar

reasoning shows that a tight threshold is wp
h+1 + wp

l+1 + wp
l+2 because the subgraph

consisting of edges eh+1, el+1, el+2 is potentially an unenumerated triangle. How-

ever, this sum is at most wp
h + 2wp

l due to the monotonicity of the edge weights.

Therefore, τ = wp
h + 2wp

l is an upper bound on the weight of the heaviest triangle

not yet enumerated. ■
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Corollary 5.3.1. When Algorithm 7 terminates, T contains the top-k weighted triangles

in the graph.1

Proof. By Lemma 5.3.2, the heaviest triangle not yet enumerated has weight at

most τ. By the algorithm’s termination condition, there are at least k triangles in T

with weight at least τ. Therefore, the top-k triangles in the graph are enumerated

and must be in T . ■

Combining the above three claims, we have that Algorithm 7 correctly returns

the top-k triangles provided the graph has at least k triangles. The dynamic heavy-

light algorithm solves both issues of the static heavy-light algorithm. Let τ∗ de-

note the weight of the k-th heaviest triangle. As soon as τ ≤ τ∗, the algorithm

will have enumerated all the top-k triangles. If the threshold τ hits τ∗ exactly, the

algorithm only enumerates around k triangles. As τ is computed on the fly, there

is no need to choose the threshold at which we partition the edges. In fact, in the

next subsection we also provide a parameter-free version of our algorithm where

αp is computed implicitly. The algorithmic analysis is done in a continuous sense

(rather than discrete), which may be of independent interest.

1Note that there may be triangles not enumerated with weight equal to one of the triangles in
T .
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5.3.3 Analysis of the Dynamic Heavy-light Algorithm

We ended the previous subsection with a proof of correctness for the dynamic

heavy-light algorithm. We showed that it always returns the top-k weighted tri-

angles provided the graph has k triangles. However, there are a few unresolved

questions. Where does the if condition on Line 7 of Algorithm 7 come from? How

should one set the parameter αp? Is it possible to remove the need to set this pa-

rameter, i.e., have a parameter-free version of the dynamic heavy-light algorithm?

In this subsection we provide a simple analysis that sheds light on these questions.

Although Algorithm 7 is a discrete-time algorithm, we analyze it using con-

tinuous differentials. Think of time t as a continuous counter for the total elapsed

computation time. Let wh(t) and wl(t) denote the weight of the edges eh and el at

time t respectively. Then, the threshold at time t is τ(t) = wh(t)p+2wl(t)p. As a proxy

to maximizing the triangles enumeration rate, we would like to maximize the rate

at which this threshold decreases. Consequently, we would like to maximize the

derivative dτ/dt by adjusting wh(t) or wl(t). Note that

dτ/dt = pwh(t)p−1dwh/dt + 2pwl(t)p−1dwl/dt. (5.2)

The derivatives dwh/dt and dwl/dt approximate the change in wh and wl per “unit

of computation time”. In each iteration of the while loop we can choose to spend

time decreasing wh or wl. Thus, a rough approximation to the derivatives is the

ratio of the change in weight (by incrementing either the h or l pointer) to the

computational cost of changing the corresponding pointer.
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Suppose the edge weights come from a probability distribution. Let CDF(w)

and PDF(w) denote the cumulative distribution function and probability density

function of the edge weight distribution respectively. Let w<h = max{w : w < wh}

denote the largest weight strictly less than wh. If we move the edge pointer h,

then the average change in wh is the ratio of (wh − w<h) to the number of edges

that have weight wh. The number of edges that have weight wh is proportional to

CDF(wh) − CDF(w<h). So, the (average) change in wh is approximately

wh − w<h

CDF(wh) −CDF(w<h)
≈

1
PDF(wh)

. (5.3)

Similarly, the (average) change in wl is approximately 1
PDF(wl)

.

To recap our analysis so far, we would like to maximize dτ/dt, which depends

on the derivatives dwh/dt and dwl/dt (Eq. (5.2)). These derivatives are approx-

imately the change in the weight per unit of computation time. In turn, these

derivatives are approximately the product of two terms: the inverse of the PDF of

the edge weight distribution and the inverse of the computation time required to

move the corresponding pointer.

In what follows, we will first analyze the dynamic heavy-light algorithm under

some assumptions about the graph generation process and the edge distribution.

Later in this subsection, we will use the insights from the analysis to develop a

parameter-free and distribution-oblivious version of the algorithm. So, for now,

we make the following assumptions:

A1 The edge weights follow a power law distribution. Formally, let W be a
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random variable. We say that W follows a power law distribution with pa-

rameter β > and some constant a > 0 if Pr[W ≥ w] ∼ aw1−β for large w. Thus,

for large w, CDF(w) = O(w1−β) and PDF(w) = O(w−β). Not only is this an im-

portant case that is easily analyzable, we find that this is a reasonable model

for several of our datasets. See Fig. 5.1 for examples.

A2 The graph G is generated using the following simple configuration

model [Newman et al., 2001]. Each node v draws its degree dv from a uni-

variate degree distribution with the sum of degrees being even. The graph is

generated from the following random process. Each node v starts out with dv

stubs. While there are stubs available, two random stubs are drawn from the

set of all stubs, and the nodes corresponding to those stubs are connected.

Furthermore, upon connection a random edge weight drawn from the edge

weight distribution is assigned to the edge. In the end, all self-loops in the

graph are discarded. While this assumption is quite strong, we find that this

simple configuration model yields good estimates for optimal values of αp

in practice. See the experimental results in Section 5.5.

Recall from above that the (average) change in wh and wl can be written as

1
PDF(wh) and 1

PDF(wl)
respectively. Assumption A1 says that PDF(w) = O(w−β). Using

this we can write the (average) change in wh and wl as O(wβ
h) and O(wβ

l ) respectively.

Now we analyze the computational cost of moving the h and l pointers. Let

GH = G[S ∪H] and GL = G[L] denote the subgraphs induced by the edge sets S ∪H

and L respectively. Let d̄GH and d̄GL denote their average degree. With appropriate
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Figure 5.1: Edge weight distribution in two datasets. (See Section 5.5.1 for a de-
scription of the datasets). These plots suggest that a power law distribution on
edge weights is a reasonable assumption. With this, we have a simple condi-
tion (Line 7) to choose which pointer to move in the dynamic heavy-light algo-
rithm (Algorithm 7).

data structures for checking the existence of edges in GH, the cost of moving the h

pointer is bounded by the degree sum of the endpoints of the edge eh in GL. On

average, this is O
(
d̄GL

)
. If we assume that GL has approximately as many edges

as G, which is valid when k is small, then d̄GL ≈ d̄G. Thus, the computational

cost of moving the h pointer is approximately O
(
d̄G

)
. Similarly, the computational

cost of moving the l pointer is bounded by the degree sum of the endpoints of

the edge el in GH. On average, this is O
(
d̄GH

)
. Since the number of edges in GH

is exactly |S ∪ H|, assumption A1 on the edge weight distribution gives us that

d̄GH = O
(
CDF(wl)d̄G

)
. Thus, the computational cost of moving el is approximately

O
(
w1−β

l d̄G

)
.

Recall that a rough approximation to the derivatives dwh/dt and dwl/dt is the
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ratio of the change in weight (by incrementing either the h or l pointer) to the

computational cost of changing the corresponding pointer. Combining the above

analyses for the (average) change in weight and the computational cost of chang-

ing a pointer, we have that

dwh/dt = O

wβ
h

d̄G

 and dwl/dt = O

w2β−1
l

d̄G

 . (5.4)

Using this we can rewrite Eq. (5.2) as

dτ/dt = pwp−1
h dwh/dt + 2pwp−1

l dwl/dt

= pwp−1
h O

wβ
h

d̄G

 + 2pwp−1
l O

w2β−1
l

d̄G

 . (5.5)

Now, in each iteration of the dynamic heavy-light algorithm, we can only change

one of the h and l pointers. Since wh and wl are decreasing as the algorithm pro-

gresses, both derivatives are monotonically decreasing. This monotonicity prop-

erty means that greedily choosing the pointer to increment is optimal. Therefore,

we should greedily change the pointer that gives the most “bang per buck”, i.e.,

choose h and l such that

wp−1
h dwh/dt = 2wp−1

l dwl/dt

⇔ wp−1
h O

wβ
h

d̄G

 = 2wp−1
l O

w2β−1
l

d̄G


⇒ wh = O

(
w

2− p
p−1+β

l

)
. (5.6)

In other words, we should maintain the edge pointers h and l such that the weights

are separated geometrically by αp = 2− p
p−1+β . This answers two of the questions we

mentioned at the start of this subsection. The above analysis motivates the choice
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of the if condition in Line 7 of Algorithm 7 and shows how to set the parameter

αp. This holds under assumptions A1 and A2. Next, we use the above analysis to

design a parameter-free and distribution-oblivious version of the dynamic heavy-

light algorithm.

Distribution-oblivious dynamic heavy-light algorithm. Now we describe how

to modify the dynamic heavy-light algorithm to obtain a “distribution-oblivious”

variant in which αp can be estimated implicitly on the fly, albeit with less ro-

bustness in practice than simply setting it. Previously, we assumed that the edge

weights follow a power law distribution (Assumption A1). However, our analysis

holds more generally. In particular, as long as the derivatives dwh/dt and dwl/dt

decrease monotonically with time, our greedy strategy of moving the pointer that

gives the most “bang per buck” will be optimal. Therefore, we only need to as-

sume that the PDF of the edge weight distribution monotonically increases as the

weight decreases. This includes a wide family of distributions, including power

law distributions, uniform distributions, etc.

The previous analysis shows that we would like to maximize dτ/dt (Eq. (5.2)).

We used Assumptions A1 and A2 to derive a closed-form expression for this

derivative Eq. (5.5). In the distribution-oblivious setting, we can maintain an es-

timate of the derivatives dwh/dt and dwl/dt as the algorithm runs and greedily

change the pointer with the higher value of wp−1dw/dt. The derivatives dwh/dt

and dwl/dt are approximately the change in weight per unit of computation time.
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The change in weight for wh is estimated by the ratio of wh−w<h and the number of

edges that have weight wh, and similarly for wl. The computational cost of chang-

ing the h pointer can be estimated by the sum of the degrees of the endpoints

of the edge eh in GL. Similarly, the computational cost of changing the l pointer

can be estimated by the sum of the degrees of the endpoints of the edge el with

GH. Consequently, we obtain a “distribution-oblivious” algorithm that works on a

family of edge weight distributions whose PDF monotonically increases as weight

decreases.

In our experiments Section 5.5 we find that this automatic way of implicitly

computing αp is quite successful. However, sometimes, noise in the derivative

estimates cause the algorithm to be slower than using a set value of αp.

5.4 Randomized Sampling Algorithms

In this section we develop randomized sampling algorithms designed to sample

a large collection of triangles with large weight. Formally, given a generalized p-

mean as a weight function, these algorithms sample triangles exactly proportional

to their weight. The main difference between the algorithms is how efficiently

they can generate samples.

In particular, we generalize three types of sampling schemes that have been

used to estimate triangle counts in unweighted graphs. The first scheme is based
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on edge sampling [Kolountzakis et al., 2012, Tsourakakis et al., 2011, Pagh and

Tsourakakis, 2012], which first samples one edge and then enumerates triangles

adjacent to the sampled edge. The second uses ideas from wedge sampling [Se-

shadhri et al., 2014], which samples two adjacent edges and checks whether these

two edges induce a triangle. The final approach generalizes the idea of path sam-

pling [Jha et al., 2015], which samples a three-edge path and checks if it induces

a triangle. Although these approaches were all designed for triangle counting in

unweighted graphs, they generalize quite seamlessly to simple schemes for sam-

pling highly weighted triangles. The main benefits of these algorithms are that

they are simple to implement and also easy to parallelize, since samples can be

trivially generated in parallel.

Recall that the weight of a triangle is given by a generalized p-mean of its edge

weights (Eq. (5.1)). Note that the weighted ordering of triangles is independent of

the scaling by 1
3 and the exponent 1

p . So, in the rest of this section we consider the

simpler weighting function

wp(a, b, c) = wp
ab + wp

bc + wp
ac. (5.7)

We will also use the notation N(a) to denote the set of neighbors of a vertex a ∈ V ,

i.e., N(a) = {b ∈ V | (a, b) ∈ E}, and da to denote the degree of vertex a, i.e.,

da = |N(a)|.
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Algorithm 8: Weighted Edge Sampling Algorithm.
Input: Weighted graph G = (V, E,w), scaling p, number of triangles k,

number of iterations t.
1 Set T = ∅.
2 for iteration 1, . . . , t do
3 Sample edge (a, b) ∝ wp

ab.
4 for each neighbor c ∈ N(a) ∩ N(b) do
5 T = T ∪ {(a, b, c)}.
6 end
7 end
8 return k triangles in T with largest p-mean weight.

5.4.1 Weighted Edge Sampling

We start with the first of our randomized sampling algorithms, namely, the

weighted edge sampling algorithm (ES) (Algorithm 8). It is based on repeating

the following simple two-step procedure over multiple iterations. It first samples

a single edge according to the following distribution:

Pr
[

sampling edge (a, b)
]
=

wp
ab

Zedge
with Zedge =

∑
(u,v)∈E

wp
uv.

After sampling an edge (a, b), it enumerates all triangles (a, b, c) incident to (a, b).

This simple algorithm has the nice property that it samples triangles exactly pro-

portional to their weight.

Lemma 5.4.1. Consider a triangle (a, b, c). In each iteration of Algorithm 8, this triangle

is enumerated with probability proportional to its weight, wp(a, b, c).

Proof. In each iteration, the probability of sampling edge (a, b) is wp
ab

Zedge
, where

Zedge =
∑

(u,v)∈E wp
uv. Triangle (a, b, c) is enumerated if and only if one of the edges
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(a, b), (b, c) or (a, c) is sampled. Therefore, the probability of enumerating triangle

(a, b, c) is equal to wp
ab

Zedge
+

wp
bc

Zedge
+

wp
ac

Zedge
∝ wp(a, b, c). ■

While the weighed edge sampling algorithm is simple to describe, making it

fast in practice requires careful implementation. First, a natural way of sampling

an edge is to pick one at random with probability proportional to its weight. But

this is slow because there are a large number of edges. However, typically there

are a much smaller number of unique edge weights. So, we first sample an edge

weight and then sample an edge with this weight. Second, pre-processing calcula-

tions of sampling probabilities for this approach involves iterating over the edges

and computing two quantities—a cumulative edge weight (in order to sample an

edge weight) and a map of edge weight to edges (in order to sample an edge given

an edge weight). This pre-processing step can take much longer than the sampling

loop if implemented naively. However, in a sorted list of edges, all edges that

share the same edge weight lie in a contiguous chunk. This significantly speeds

up the process of computing the above quantities.

The weighted edge sampling algorithm has a few issues. First, there is no

guarantee that it will generate at least k unique triangles. Furthermore, even if it

samples a sufficient number of triangles, there is no guarantee that these are the

top-weighted triangles. This issue is an inherent limitation of randomized sampling

algorithms in general. The second issue is that the algorithm takes O(da + db) time

to find triangles adjacent to an edge (a, b). This can be expensive in graphs where

high-degree nodes are connected. Our next sampling algorithm mitigates this
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issue. However, as the experimental results in Section 5.5 show, in practice, the

weighted edge sampling algorithm is competitive with the deterministic dynamic

heavy-light algorithm (Algorithm 7) and is the most efficient out of our sampling

algorithms.
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(c) Iterate through neighbors
and add triangles to T .
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and add triangle to T .

Figure 5.2: (top row) Edge sampling: sample an edge, iterate through its neigh-
bors, add triangles. (bottom row): Wedge sampling: sample a vertex, sample two
neighbors, add triangle.

5.4.2 Weighted Wedge Sampling

As mentioned above, one of the issues with weighted edge sampling is that it has

to iterate over neighbors of the endpoints of the sampled edge to find triangles.

This can be expensive if the degrees of the endpoints are large. An alternative

approach is to sample adjacent edges—also called wedges—with large weight and
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then check if each wedge induces a triangle. This sampling scheme is called wedge

sampling and this has been used for estimating the total number of triangles in an

unweighted graph [Seshadhri et al., 2014, Türkoglu and Turk, 2017].

The weighted wedge sampling algorithm (Algorithm 9) repeats the following

three-step procedure over multiple iterations. It first samples a single node with

a bias towards nodes that participate in heavily weighted edges. Specifically, let

D(a) =
∑

b∈N(a) wp
ab denote the sum of the edge weights incident to a. Algorithm 9

samples a node a according to the following distribution:

Pr
[

sampling node a
]
=

W̃1(a)
Zw,1

=
2 · da · D(a)

Zw,1
, (5.8)

where Zw,1 is a normalizing constant. Then, it samples a neighbor of node a, again

with a bias towards nodes that participate in heavily weighted edges. Specifically,

it samples a neighbor of a, say b, according to the following distribution:

Pr
[

sampling node b ∈ N(a) | a
]
=

W̃2(b | a)
Zw,2

=
da · w

p
ab + D(a)
Zw,2

, (5.9)

where Zw,2 is a normalizing constant. Finally, it samples a second neighbor of node

a, say c, according to the following distribution:

Pr
[

sampling node c ∈ N(a) | a, b
]
=

W̃3(c | a, b)
Zw,3

=
wp

ab + wp
ac

Zw,3
, (5.10)

where Zw,3 is again a normalizing constant. If the sampled wedge {(a, b), (a, c)}

induces a triangle, then Algorithm 9 adds it to its collection of triangles.

While the exact sampling distributions above may seem arbitrary, they bias the

sampling of triangles towards those that are heavily weighted. However, as in the
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Algorithm 9: Weighted Wedge Sampling Algorithm
Input: Weighted graph G = (V, E,w), scaling p, number of triangles k,

number of iterations t.
1 Set T = ∅.
2 for iteration 1, . . . , t do
3 Sample node a with probability as in Eq. (5.8).
4 Sample b ∈ N(a) with probability as in Eq. (5.9).
5 Sample c ∈ N(a) with probability as in Eq. (5.10).
6 if nodes a, b, c form a triangle then
7 T = T ∪ {(a, b, c)}.
8 end
9 return k triangles in T with largest p-mean weight.

case of Algorithm 8, they are designed so that each iteration of Algorithm 9 sam-

ples a triangle with probability proportional to its weight. In particular, similar to

the unweighted wedge sampling scheme of Seshadhri et al. [2014], we show the

following.

Lemma 5.4.2. Consider a triangle (a, b, c). In each iteration of Algorithm 9, this triangle

is enumerated with probability wp(a,b,c)
Zwedge

, where Zwedge =
∑

v∈V dv ·D(v) =
∑

v∈V dv
∑

u∈N(v) wp
uv.

Proof. The normalizing constants in Eqs. (5.8) to (5.10) are

Zw,1 = 2
∑
v∈V

dv · D(v),

Zw,2 = W̃1(a),

Zw,3 = W̃2(b | a).

Therefore, the probability of sampling a wedge (a, b, c) centered on node a is equal
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to
W̃1(a)
Zw,1

·
W̃2(b | a)

Zw,2
·

W̃3(c | a, b)
Zw,3

=
W̃3(c | a, b)

Zw,1
=

wp
ab + wp

ac

Zw,1
.

This implies that the probability of sampling any of the three wedges comprising

nodes a, b and c is equal to

wp
ab + wp

ac

Zw,1
+

wp
ac + wp

bc

Zw,1
+

wp
bc + wp

ab

Zw,1
=

wp(a, b, c)
Zwedge

,

where the last equality follows from the definitions of Zw,1 and Zwedge. Triangle

(a, b, c) is enumerated if and only if one of its three wedges is sampled. This com-

pletes the proof. ■

5.4.3 Weighted Path Sampling

In addition to the above, we can also design a sampling scheme based on path

sampling [Jha et al., 2015]. Edge sampling finds triangles after sampling a single

edge and wedge sampling finds triangles after sampling two edges; path sam-

pling finds triangles by sampling three edges that are biased towards finding a

top-weighted triangle. This sampling scheme performs poorly in practice, but we

include it here for the sake of theoretical interest.

The weighted path sampling algorithm (Algorithm 10) repeats the following

three-step procedure over multiple iterations. It first samples an edge (a, b). Then

it samples two more edges, (a, c) and (b, c′), connected to (a, b) to form a length-

three path. If c = c′, then this path forms a triangle. Let d̃v := dv − 1 and D̃u(v) :=
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Algorithm 10: Weighted Path Sampling Algorithm.
Input: Weighted graph G = (V, E,w), scaling p, number of triangles k,

number of iterations t.
1 Set T = ∅.
2 for iteration 1, . . . , t do
3 Sample edge (a, b) with probability as in Eq. (5.11).
4 Sample c ∈ N(a) \ b with probability as in Eq. (5.12).
5 Sample c′ ∈ N(b) \ a with probability as in Eq. (5.13).
6 if c = c′ then
7 T = T ∪ {(a, b, c)}.
8 end
9 return k triangles in T with largest p-mean weight.

D(v) − wp
uv. (Recall that D(v) =

∑
u∈N(v) wp

uv.) The sampling distributions for these

three samples are as follows:

Pr
[

sampling edge (a, b)
]
=

W̃1(a, b)
Zp,1

=
d̃ad̃bwp

ab + d̃aD̃a(b) + d̃bD̃b(a)
Zp,1

,

(5.11)

Pr
[

sampling node c ∈ N(a) \ {b} | a, b
]
=

W̃2(c | a, b)
Zp,2

=
d̃b(wp

ac + wp
ab) + D̃a(b)

Zp,2
,

(5.12)

Pr
[

sampling node c′ ∈ N(b) \ {a} | a, b
]
==

W̃3(c′ | a, b)
Zp,3

=
wp

ab + wp
ac + wp

bc′

Zp,3
, (5.13)

where Zp,1,Zp,2 and Zp,3 are normalizing constants.

As with weighted wedge sampling, the above sampling distributions may

seem arbitrary, but they are designed to sample triangles proportional to their

weight.

Lemma 5.4.3. Consider a triangle (a, b, c). In each iteration of Algorithm 10, this triangle
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is enumerated with probability wp(a,b,c)
Zpath

, where Zpath =
∑

u,v∈V

(
d̃ud̃vw

p
uv + d̃uD̃u(v) + d̃vD̃v(u)

)
.

Proof. The normalizing constants in Eqs. (5.11) to (5.13) are

Zp,1 =
∑
a,b∈V

(
d̃ad̃bwp

ab + d̃aD̃a(b) + d̃bD̃b(a)
)

= Zpath,

Zp,2 =
∑

c∈N(a)\b

d̃b(wp
ac + wp

ab) + D̃a(b)

= d̃bD̃b(a) + d̃ad̃bwab + d̃aD̃a(b)

= W̃1(a, b),

Zp,3 =
∑

c′∈N(b)\a

wp
ac + wp

ab + wp
bc′ ,

= d̃b(wac + wab) + D̃a(b)

= W̃2(c | a, b).

A triangle (a, b, c) is enumerated if and only if c = c′. Therefore, the probability of

sampling triangle (a, b, c) is equal to

W̃1(a, b)
Zp,1

·
W̃2(c | a, b)

Zp,2
·

W̃3(c′ | a, b)
Zp,3

=
W̃3(c′ | a, b)

Zp,1
=

wp(a, b, c)
Zp,1

=
wp(a, b, c)

Zpath
. ■

5.4.4 Sample Efficiency

Lemmas 5.4.1 to 5.4.3 say that Algorithms 8 to 10 tend to sample triangles with

large weight. However, there is no guarantee that the top-weighted triangles are
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actually enumerated. The following simple probabilistic analysis gives some in-

sight into the sample efficiency of these algorithms.

Let q = wp(a,b,c)
Z denote the probability of sampling triangle (a, b, c). (Here, Z

depends on the sampling algorithm, and is one of Zedge,Zwedge and Zpath.) Let s

denote the number of samples. Then, r = 1− (1−q)s is the probability that triangle

(a, b, c) is sampled at least once in s samples. Using the fact that 1− x ≤ exp(−x), we

have that r ≥ 1−exp(−sq). In other words, let δ ∈ (0, 1). Then, if s ≥ log(δ−1)
q =

Z log(δ−1)
wp(a,b,c) ,

then the probability that triangle (a, b, c) is enumerated is at least 1 − δ.

Comparing the expressions for the normalizing constants for the three sam-

pling algorithms, we see that the normalizing constants for weighted wedge and

weighted path sampling are larger than for weighted edge sampling. This com-

bined with the above analysis implies that the normalizing constants for weighted

wedge and weighted path sampling increase the number of samples required for

finding the top-weighted triangles. However, obtaining samples with weighted

edge sampling can be more expensive if it has to find common neighbors of nodes

with large degree. It is not immediately clear which algorithm is better, but our

experimental results in Section 5.5 show that edge sampling is superior in practice.

5.4.5 Extensions to Cliques

All of our sampling algorithms can also be used to sample k-cliques for an arbi-

trary k. The high level objective of each sampling algorithm is to sample some
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sort of subgraph with probability proportional to its weight. The three sampling

algorithms we presented are ways to sample edges, wedges, and length-3 paths.

To convert one of our triangle samplers to a clique sampler, we can sample a sub-

graph with one of our three algorithms and then enumerate all cliques incident

on that subgraph. For edge sampling we can sample an edge and enumerate all

(k−2)-cliques incident on that edge. For wedge and path sampling we can sample

wedges and paths until we sample a triangle; once a triangle is sampled, we can

then enumerate all (k − 3)-cliques incident on that triangle. This natural extension

to cliques is an advantage of the sampling algorithms over the dynamic heavy-

light algorithm (Algorithm 7), which does not easily extend to larger cliques. Even

though our main focus is on triangles and the bulk of our experiments focuses on

this setting (Section 5.5), we provide some experiments for cliques in Section 5.6.

5.5 Numerical Experiments

We now report the results of several experiments comparing the perfor-

mance of our dynamic and randomized sampling algorithms with some

competitive baselines, including the static heavy-light algorithm (Algo-

rithm 6). The implementations of our algorithms and scripts to re-

produce the results are available at https://github.com/raunakkmr/

Retrieving-top-weighted-triangles-in-graphs.

There are two main takeaways. First, our dynamic heavy-light algorithm (Al-
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gorithm 7) performs the best across a wide range of datasets, outperforming the

baselines by several orders of magnitude in terms of running time. Second, edge

sampling (Algorithm 8) performs the best out of our randomized sampling algo-

rithms. While it is competitive with the dynamic heavy-light algorithm, it is not

always guaranteed to achieve 100% accuracy. In contrast, the dynamic heavy-light

algorithm is usually faster and is always guaranteed to achieve 100% accuracy.

5.5.1 Datasets

We use a number of datasets in order to test the performance our algorithms. The

datasets can be found at http://www.cs.cornell.edu/˜arb/data/index.

html. Table 5.1 lists summary statistics of the datasets and we describe them

briefly below.

tags-stack-overflow [Benson et al., 2018]. Stack Overflow is a platform where

users ask, answer, and discuss computer programming questions. They also an-

notate questions with 1–5 tags. We construct a graph where the nodes are tags

and the weight of an edge is the number of questions jointly annotated by the two

tags.

threads-stack-overflow [Benson et al., 2018]. We construct a graph from a

dataset of user co-participation on Stack Overflow question threads that last at
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most 24 hours. Nodes are users, and the weight of an edge is the number of times

the two users appeared in the same short question thread.

Wikipedia-clickstream [Wulczyn and Taraborelli, 2017]. We construct a graph

from Wikipedia clickstream data (request logs) from January 2017. The logs cap-

ture how users transition between articles. (Only transitions appearing at least 11

times were recorded.) The nodes in this graph correspond to Wikipedia articles,

and the weight of an edge is the number of times users transitioned between the

two pages.

Ethereum Ethereum is a blockchain-based computing platform for decentral-

ized applications. Transactions are used to update state in the Ethereum network,

and each transaction has a sender and a receiver address. We construct a graph

using data for all transactions on the platform up to August 17, 2018 as provided

by blockchair.com. The nodes in this graph correspond to addresses, and the

weight of an edge is the number of transactions between the two addresses.

AMiner and MAG [Tang et al., 2008, Sinha et al., 2015]. We construct weighted

co-authorship graphs from two large bibliographic databases—AMiner and the

Microsoft Academic Graph. The nodes in these graphs correspond to authors,

and the weight of an edge is the number of papers they have co-authored. Papers

with more than 25 authors were omitted from the graph construction.
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Table 5.1: Summary statistics of datasets.

dataset # nodes # edges edge weight

mean max

tags-stack-overflow 50K 4.2M 13 469
threads-stack-overflow 2.3M 21M 1.1 546
Wikipedia-clickstream 4.4M 23M 347 817M

Ethereum 38M 103M 2.8 1.9M
AMiner 93M 324M 1.3 13K

reddit-reply 8.4M 435M 1.5 165K
MAG 173M 545M 1.7 38K

Spotify 3.6M 1.9B 8.6 2.8M

reddit-reply [Hessel et al., 2016, Liu et al., 2019]. Users on the social media web

site reddit.com interact by commenting on each other’s posts. We construct a

graph from a collection of user comments. Nodes are users, and the weight of an

edge is the number of interactions between the two users.

Spotify As part of a machine learning challenge, the music streaming platform

Spotify released a large number of user “listening sessions,” each consisting of a

set of songs. We construct a weighted graph where the nodes represent songs and

the weight of an edge is the number of times the songs co-appeared in a session.

5.5.2 Experimental Setup

We evaluate the performance (i.e., the running time) of the following algorithms:
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1. Randomized edge sampling (ES) (Algorithm 8).

2. Randomized wedge sampling (WS) (Algorithm 9).

3. Randomized path sampling (PS) (Algorithm 10).

4. Dynamic heavy-light (DHL) (Algorithm 7).

5. Auto heavy-light (AHL), which is the oblivious version of DHL that auto-

matically adjusts edge promotion to optimize the decrease in the threshold.

This is described at the end of Section 5.3.3.

6. Static heavy-light (SHL) (Algorithm 6).

7. As a baseline, we use an optimized sequential version of NodeItera-

tor++ [Berry et al., 2015, Suri and Vassilvitskii, 2011, Chiba and Nishizeki,

1985] and refer to this as the “brute force approach” (BF). Essentially, this

algorithm iterates over vertices with decreasing degree, and for each vertex

it only enumerates triangles that are formed by neighboring vertices with

lower degree than itself.

We implement all the algorithms in C++ and run all the experiments on a 64

core 2.20 GHz Intel Xeon CPU with 200 GB of RAM. We use parallel sorting for all

algorithms and use parallel sampling for the randomized sampling algorithms.

We execute all other parts of the algorithms sequentially. We evaluate the algo-

rithms for two values of k: 1,000 and 100,000. We use the arithmetic mean as the

weight of a triangle, i.e., p = 1 in Eq. (5.1).
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Recall that DHL (Algorithm 7) uses a power law distribution model of the

edge weights and sets a parameter αp based on the power law exponent. We fix

αp = 1.25 for our experiments and this works well across a range of datasets.

The randomized sampling algorithms are not guaranteed to enumerate all of

the top-k weighted triangles. Instead, we measure the performance of these algo-

rithms in terms of running time and accuracy (the fraction of top-k triangles actu-

ally enumerated). We run ES long enough for it to achieve at least 94% (k = 1, 000)

or 50% (k = 100, 000) accuracy on all datasets. We run WS long enough to achieve

50% accuracy (for both values of k). However, in practice, its performance is poor,

and we terminate the algorithm if it takes longer than BF to achieve this accuracy

level. PS takes longer than BF to achieve this accuracy level on all datasets, so we

do not include it in Table 5.2.

Similarly, SHL is not guaranteed to achieve 100% accuracy because it relies on

a fixed threshold to partition the edges as heavy and light, and only enumerates

triangles formed by heavy edges. As the threshold decreases a larger number of

edges are labelled heavy. This increases the accuracy but also slows down the al-

gorithm. Fig. 5.3 illustrates this trade-off on the Ethereum dataset; a similar trend

is observed on the other datasets. In our experiments we label the top 10% of

edges as heavy and report the achieved accuracy. As we discuss below, SHL at-

tains sub-100% accuracy in practice and is slower than the other proposed algo-

rithms (DHL and AHL); improving the accuracy would only make this algorithm

slower.

209



0 20 40 60 80 100
percentage of edges labelled heavy
0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

0 20 40 60 80 100
percentage of edges labelled heavy

0

20

40

60

80

100

tim
e 

(s
ec

on
ds

)

Figure 5.3: Accuracy and running time as a function of edges labeled “heavy”
by the thresholding for the static heavy-light algorithm (Algorithm 6) on the
Ethereum dataset for k = 1000. As the threshold decreases, a larger percentage
of edges are labelled heavy. This increases the accuracy but also increases the run-
ning time. For reasonable accuracy levels, we find that the running time is slower
than our optimized dynamic heavy-light algorithm (Algorithm 7), which achieves
100% accuracy. See Table 5.2.

5.5.3 Results

Table 5.2 shows the running times of all of our algorithms. BF did not terminate on

Spotify even after 24 hours, so we ended the execution and indicate the running

time as > 86400 seconds. We highlight a few important findings.

1. First, our deterministic algorithms DHL and AHL excel at retrieving the top

k triangles. They achieve perfect accuracy while being several orders of mag-

nitude faster than BF. For instance, these algorithms get a 1000x speedup on

the reddit-reply dataset (k = 1, 000) and more than a 2000x speedup on the

Spotify dataset (k = 100, 000). These algorithms also outperform SHL by a

significant margin in terms of time and accuracy. For example, despite be-
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ing 30x slower on reddit-reply, SHL only achieves 50% accuracy (k = 1, 000).

Again, DHL and AHL always achieve 100% accuracy, and do so in a fraction

of the time taken by the baseline algorithms BF and SHL.

2. Among the randomized sampling algorithms, ES performs much better than

WS. WS struggles to achieve high accuracy and is not competitive with the

BF baseline or SHL. On the other hand, ES is quite competitive with even

DHL and AHL. ES retrieves the top 1000 triangles on the AMiner and MAG

datasets with 99% accuracy at speedups of 2x or 4x over DHL and AHL. A

similar speedup is observed for k = 100, 000, but ES is only achieving 50%

accuracy in these cases. Even though ES works well in these cases, our deter-

ministic algorithms are still competitive; we conclude that intelligent deter-

ministic approaches work extremely well for finding top weighted triangles

in large weighted graphs.

3. All of our algorithms except BF and WS use a pre-processing step of sorting

edges by weight. Surprisingly, we find that this pre-processing step is the

bottleneck in our computations. Sorting in parallel is crucial to achieving

high performance. In turn, this negates the possible benefit of parallel sam-

pling for the randomized algorithms over our deterministic methods, whose

main routines are inherently sequential.
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Table 5.2: Running times (in seconds) averaged over 10 runs for our proposed al-
gorithms and baselines. We ran ES to achieve 94% (k = 1,000) or 50% (k = 100,000)
accuracy. We ran WS to achieve just 50% accuracy and we stopped it early if it
took longer than BF (or longer than SHL on the Spotify dataset). SHL is also an
approximation, so we report its accuracy in the final column.

k dataset BF ES WS DHL AHL SHL Accuracy
(SHL)

1000
tags-so 12.71 0.57 11.28 .08 0.09 0.54 0.99

threads-so 34.92 1.31 >BF 0.53 0.38 1.55 0.55
Wikipedia 16.32 14.31 >BF 5.44 7.26 2.02 0.87
Ethereum 52.91 9.03 >BF 8.12 6.94 11.90 0.28

Aminer 243.75 3.72 >BF 13.35 12.36 43.47 0.32
reddit-reply 4047.62 5.19 341.17 5.02 4.74 102.65 0.51

MAG 512.24 4.92 48.58 29.19 20.89 72.49 0.91
Spotify >86400 60.33 >SHL 31.82 30.79 5388.45 1.00

100000
tags-so 13.06 0.58 >BF 0.23 0.23 0.62 0.28

threads-so 33.99 1.19 >BF 1.82 1.73 1.63 0.32
Wikipedia 17.34 13.64 >BF 5.49 7.24 2.15 0.13
Ethereum 57.35 10.03 >BF 18.11 19.87 11.70 0.11

Aminer 245.28 3.45 >BF 15.38 13.91 43.28 0.24
reddit-reply 3857.57 6.52 >BF 6.87 7.49 98.34 0.34

MAG 524.80 4.25 >BF 29.52 21.37 75.97 0.10
Spotify >86400 47.27 >SHL 30.57 29.89 5384.17 0.92

5.6 Additional Numerical Experiments

While our algorithms focus on finding top weighted triangles, some of the ran-

domized sampling algorithms naturally extend to finding larger cliques. In this

case the weight of a clique is the generalized p-mean of the weights of the edges

in the clique. We find that the extension of edge sampling (Section 5.4.5) per-

forms best in practice. So, we compare the performance of this edge sampling
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Table 5.3: Summary statistics of datasets used in the clique sampling experiments.

dataset # nodes # edges edge weight

mean max

email-Enron 143 1800 16 819
email-Eu 979 29K 25 48K

contact-high-school 327 5.8K 32 29K
contact-primary-school 242 8.3K 15 780

tags-math-sx 1.6K 91K 17 16K

algorithm to an intelligent brute force approach for finding top weighted 4-

cliques and 5-cliques that enumerates all cliques using the algorithm of Chiba

and Nishizeki [Chiba and Nishizeki, 1985]. Our main finding is that edge sam-

pling can approximately retrieve the top weighted cliques much faster; however,

the performance does show higher variance than for the case of triangles.

Datasets. Since brute force enumeration of even 4-cliques is computationally

expensive, we use smaller datasets for these experiments than the ones in Ta-

ble 5.1. We construct weighted graphs from 5 temporal hypergraph datasets [Ben-

son et al., 2018], where the weight of an edge (u, v) is the number of hyperedges

that contain nodes u and v. Table 5.3 shows summary statistics for the data.

Experimental setup. We evaluate the performance of our proposed algorithm,

randomized edge sampling (ES) (Algorithm 8) with the modifications mentioned

in Section 5.4.5. We use an optimized sequential clique enumerator as a baseline

and refer to this as the “brute force approach” (BF). The rest of the experimental
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setup is the same as in Section 5.5. We evaluate the algorithms for two values of k

(1, 000 and 100, 000) and two clique sizes (4 and 5). We also use p = 1 in Eq. (5.7).

Since ES is randomized, it is not guaranteed to enumerate all of the top-k

weighted cliques. Therefore, we measure its performance in terms of the running

time and accuracy (the fraction of top-k cliques actually enumerated). In particu-

lar, we measure the time ES takes to achieve at least 50% accuracy on all datasets

for 4-cliques and at least 40% accuracy for 5-cliques.

Results. Table 5.4 shows the running times of BF and ES for finding top

weighted 4-cliques and 5-cliques. There are a few important takeaways.

1. ES is substantially faster than BF on all datasets for both 4-cliques and 5-

cliques. For example, ES is 14x faster than BF on the email-Eu dataset for

both 4-cliques and 5-cliques. However, it is important to note that ES is only

required to achieve 40 to 50% accuracy in these cases.

2. Unlike the performance of ES for finding top weighted triangles, the per-

formance of ES for finding top weighted cliques has higher variance across

runs. Furthermore, in some cases, ES takes longer than BF, e.g., for finding 5-

cliques on the tags-math-sx dataset. A better understanding of these changes

in performance compared to the triangle case is still an open question.
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Table 5.4: Running times (in seconds) averaged over 10 runs for brute force enu-
meration (BF) and parallel edge sampling (ES) for 4 and 5 cliques. We ran ES long
enough to achieve 50% (4-cliques) and 40% (5-cliques) accuracy for k = 1, 000 and
100, 000.

clique size

4 5

k dataset BF ES BF ES

1000
email-Enron 1.13 0.05 1.1 0.3

email-Eu 9.17 0.4 83 5.8
contact-high-school 1.32 0.08 1.24 0.5

contact-primary-school 1.63 0.3 9 2.5
tags-math-sx 398 4.5 9340 >9340

100000
email-Enron 1.13 0.05 1.1 0.3

email-Eu 9.17 0.45 83 5.8
contact-high-school 1.32 0.08 1.24 0.5

contact-primary-school 1.63 0.2 9 2.5
tags-math-sx 398 4.5 9340 >9340

5.7 Discussion

Subgraph patterns, and in particular, triangles, have been used extensively in net-

work science applications. However, most of the existing literature focuses on

counting or enumeration tasks in unweighted graphs. In this chapter we devel-

oped deterministic and randomized sampling algorithms for finding the heaviest

triangles in large weighted graphs. With some tuning, our main deterministic

algorithm can find these triangles in a few seconds on graphs with hundreds of

millions of edges or in 30 seconds on a graph with billions of edges. This is orders

of magnitude faster than what one could achieve with existing fast enumeration
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schemes and is usually much faster than even our randomized sampling algo-

rithms. We anticipate that our work will enable learners to better explore large-

scale weighted graphs and therefore, better understand past interaction data.

We also expect that our work will spur new algorithmic developments on sub-

graph listing and counting in weighted graphs. For example, one interesting

avenue for future research is to develop randomized sampling algorithms that

sample triangles with probability proportional to some arbitrary function of their

weight, where the function is chosen to converge to the top weighted triangles

faster. This could make randomized sampling approaches competitive with our

fast deterministic methods.
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