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Overview

Sequential decision making problems typically involve an
exploration-exploitation trade-off.

The upper confidence bound technique:
1 Compute an empirical estimate of some desired quantity.
2 Add an “exploration term” to the empirical estimate.
3 Exploit this modified estimate instead.
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Stochastic Bandits
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Setup

There is a known time horizon T .

The learner has access to a set of K arms, denoted by A.

For each arm a:

Let Da be its reward distribution with support in [0, 1].
Let µ(a) = E[Da] be its mean reward.

Let µ∗ = maxa∈A µ(a) denote the best mean reward.

Let a∗ ∈ arg maxa∈A µ(a) denote any optimal arm.

The learner does not know the true reward distributions.
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Problem Protocol

In each round t ∈ [T ],

The learner chooses an arm at ∈ A.

It earns a reward rt ∼ Dat .
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Examples

Slot Machines

Medical Trials

Dynamic Pricing

Dynamic Procurement

· · ·
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Goal

The learner’s goal is to maximize E
[∑T

t=1 rt
]
.

If the learner knew the true reward distributions, this would be easy.

Simply choose a∗ in every round.

But the learner does not know a∗.

This leads to the fundamental exploration-exploitation trade-off.

So, we will measure a learner’s performance in terms of its regret.
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Regret

Regret measures how well a learner performs compared to the best
benchmark, which in this case is the best fixed arm.

The cumulative regret after T rounds is defined as

R(T ) = µ∗ · T −
T∑
t=1

µ(at). (1)

Note that R(T ) is a random variable because it depends on the
randomness in the rewards and the learner.

Therefore, we will usually analyze the expected regret E[R(T )].

The goal of a learner is to choose actions that minimize regret.
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Exploration-Exploitation Trade-Off

A key feature of a multi-armed bandit problem is the trade-off between

Exploration: Find out more information about each arm.

Exploitation: Choose the best arm so far.
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Uniform Exploration
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Idea

If we knew the true means, then we’d simply choose a∗.

Why don’t we do the following?
1 Compute an empirical estimate of the true means.
2 Choose an arm with the highest empirical mean.
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Uniform Exploration Algorithm

Algorithm 1: Uniform Exploration

1 Choose each arm N times
2 For arm a ∈ A, let µ̄(a) be its empirical mean
3 Let â ∈ arg maxa∈A µ̄(a)
4 Play arm â in all remaining rounds.

This algorithm explicitly explores in the first KN rounds and then
exploits in the remaining T − KN rounds.
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Analysis - Clean Event

Let the confidence radius be r(a) =
√

2 log T
N .

Using Hoeffding’s inequality,

Pr[|µ̄(a)− µ(a)| ≤ r(a)] ≥ 1− 2

T 4
. (2)

Using the union bound,

Pr[∀a ∈ A, |µ̄(a)− µ(a)| ≤ r(a)] ≥ 1− 2

T 3
. (3)

Define the above to be the clean event.

The clean event says that all empirical estimates ≈ true means.
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Analysis - Regret

Condition on the clean event.

In the first KN rounds, the regret is at most 1 in each round.

In the remaining T −KN rounds, the regret is ∆(â) = µ(a∗)− µ(â).

In order to bound ∆(â), observe that

µ(a∗)− r(a∗) ≤ µ̄(a∗) ≤ µ̄(â) ≤ µ(â) + r(â). (4)

Therefore,

∆(â) ≤ O

(√
logT

N

)
. (5)
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Analysis - Regret

So, we have

R(T ) ≤ KN + O

(√
logT

N

)
· (T − KN) (6)

≤ KN + O

(√
logT

N

)
· T . (7)

If we choose N = (T/K )2/3O(logT )1/3, then

R(T ) ≤ O
(

(K logT )1/3T 2/3
)
. (8)
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Analysis - Regret

Now, we can bound the expected regret as follows:

E[R(T )] = Pr[clean event]E [R(T ) | clean event] (9)

+ Pr[dirty event]E [R(T ) | dirty event] (10)

≤ 1 · O
(

(K logT )1/3T 2/3
)

+
2

T 3
· T (11)

≤ O
(

(K logT )1/3T 2/3
)
. (12)



Overview Stochastic Bandits Uniform Exploration Upper Confidence Bound MDP and UCBVI Takeaway

Discussion

Pros:

The algorithm is extremely simple.

It provides a non-trivial regret bound.

Cons:

Suboptimal.

The performance in the exploration phase is terrible.

Does not explore adaptively.
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Upper Confidence Bound
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Idea

It’s good to choose an arm if

it has not been chosen enough number of times yet,
or its empirical mean so far is high.

Do not waste rounds exploring arms that

have already been chosen many times,
and have a low empirical mean.
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Modified Clean Event

Let the confidence radius in round t be

rt(a) =

√
2 logT

nt(a)
, (13)

where nt(a) is the number of times arm a has been chosen in the
first t rounds.

Let µ̄t(a) denote the empirical estimate of arm a in round t.

Then,

Pr[∀a ∈ A, t ∈ [T ], |µ̄t(a)− µ(a)| ≤ rt(a)] ≥ 1− 2

T 2
. (14)

Define the above to be the clean event.
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Confidence Bounds

Define the upper and lower confidence bounds in round t as

UCBt(a) = µ̄t(a) + rt(a), (15)

LCBt(a) = µ̄t(a)− rt(a). (16)

Define the confidence interval in round t as [LCBt(a),UCBt(a)].
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UCB1 Algorithm

Algorithm 2: UCB1

1 Try each arm once
2 In each round t, choose at ∈ arg maxa∈A UCBt(a)

Note that the selection rule naturally incorporates exploration and
exploitation because

UCBt(a) = µ̄t(a) + O

(√
2 logT

nt(a)

)
. (17)
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Analysis - Regret

Condition on the clean event. Then,

µ̄t(at) ≤ µ(at) + rt(at). (18)

By the algorithm’s selection rule,

UCBt(a
∗) ≤ UCBt(at). (19)



Overview Stochastic Bandits Uniform Exploration Upper Confidence Bound MDP and UCBVI Takeaway

Analysis - Regret

Condition on the clean event. Then,

µ̄t(at) ≤ µ(at) + rt(at). (18)

By the algorithm’s selection rule,

UCBt(a
∗) ≤ UCBt(at). (19)

Combining the above shows that

µ(a∗) ≤ UCBt(a
∗) (20)

≤ UCBt(at) (21)

= µ̄t(at) + rt(at) (22)

≤ µ(at) + 2rt(at). (23)
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Analysis - Regret

Therefore,

∆(at) = O(rt(at)) = O

(√
2 logT

nt(a)

)
. (18)
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Analysis - Regret

Therefore,

∆(at) = O(rt(at)) = O

(√
2 logT

nt(a)

)
. (18)

Consider any arm a ∈ A.

Let t be the last round when a is played. Then, nt(a) = nT (a).
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Analysis - Regret

Therefore,

∆(at) = O(rt(at)) = O

(√
2 logT

nt(a)

)
. (18)

Consider any arm a ∈ A.

Let t be the last round when a is played. Then, nt(a) = nT (a).

Therefore,

∆(a) ≤ O(rt(a)) = O(rT (a)) = O

(√
2 logT

nT (a)

)
. (19)

This shows that if an arm is played many times, then its gap will be
small. This is precisely what allows us to bound the regret.
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Analysis - Regret

Let R(t, a) = ∆(a)nt(a) denote the regret of arm a in the first t
rounds.

Then, we can write the cumulative regret as

R(t) =
∑
a∈A

O

(√
logT

nt(a)
nt(a)

)
= O

(√
logT

)∑
a∈A

√
nt(a). (20)

Since square root is a concave function and
∑

a∈A nt(a) = t,

R(t) = O
(√

Kt logT
)
. (21)

We can bound the expected regret as before and we have that for all
rounds t ∈ [T ],

E[R(t)] = O
(√

Kt logT
)
. (22)
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Discussion

Pros:

Regret bound is optimal.

The UCB trick is widely applicable.



Overview Stochastic Bandits Uniform Exploration Upper Confidence Bound MDP and UCBVI Takeaway

MDP and UCBVI
(Quick Overview)
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Markov Decision Processes

A Markov decision process (MDP) M is a tuple (S ,A,P, r ,T , µ),
where

S is a set of states,

A is a set of actions,

P : S × A→ ∆(S) is a set of transition probabilities,

R : S × A→ [0, 1] is a reward function,

T ∈ N is the time horizon,

µ ∈ ∆(S) is an initial state distribution.

A stationary, randomized policy π : S → ∆(A) is a mapping from states
to distribution over actions.
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Markov Decision Processes

The dynamics of an MDP are as follows:

Sample an initial state s0 ∼ µ.

In each round t = 0, 1, . . . ,T − 1:
1 Choose an action at ∼ π(·|st)
2 Observe reward rt = R(st , at)
3 Transition to the next state st+1 ∼ P(·|st , at)

The goal of a learner is to learn a policy that maximizes E
[∑T−1

t=0 rt
]
.
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MDP - Planning

If the MDP is known, i.e., the learner knows P and r , then the problem
is “easy” to solve using dynamic programming.

What if the MDP is unknown?
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MDP - Learning

For simplicity, assume that the reward is known, but the transition
probabilities are unknown.

In each episode n ∈ [N],

The learner chooses some policy πn.
This policy is executed on sn0 ∼ µ for T rounds.

The goal is to minimize the regret between the values of the
optimal policy and the sequence of policies executed by the learner:

E [regret] = E

[
N∑

n=1

V ∗ − V πn

]
. (23)
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Upper Confidence Bound Value Iteration (UCBVI)

Think about value iteration (VI) as a black box that accepts an
MDP as input and outputs the optimal policy for this MDP.

The MDP is specified by its transition probabilities and reward
function.



Overview Stochastic Bandits Uniform Exploration Upper Confidence Bound MDP and UCBVI Takeaway

Upper Confidence Bound Value Iteration (UCBVI)

Algorithm 4: UCBVI

1 for n = 1, 2, . . . ,N do
2 Let Nn

t (s, a) be the number of times we saw the state-action pair
(s, a) in round t in the first n − 1 episodes

3 Let Nn
t (s, a, s ′) be the number of times we saw the state-action

pair (s, a) in round t in the first n − 1 episodes and transitioned
to state s ′

4 For all s, a, s ′, t, estimate the transition probabilities as

P̂n
t (s ′|s, a) =

Nn
t (s, a, s ′)

Nn
t (s, a)

. (24)

5 Compute πn = VI
(
{P̂n

t , rt + bnt }T−1
t=1

)
6 Execute πn

7 end
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Upper Confidence Bound Value Iteration (UCBVI)

The bnt terms are defined as

bnt (s, a) = O

(
T

√
ln(SATN/δ)

Nn
t (s, a)

)
. (24)

As before, this term allows us to trade-off between exploration and
exploitation.
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Takeaway

Sequential decision making problems typically involve an
exploration-exploitation trade-off.

The upper confidence bound technique:
1 Compute an empirical estimate of some desired quantity.
2 Add an “exploration term” to the empirical estimate.
3 Exploit this modified estimate instead.
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The End
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