Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	0000000	00000	000

Optimism in the Face of Uncertainty

Raunak Kumar

Cornell University

Great Ideas in TCS, Fall 2020

December 13, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview 00	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI 00000	Takeaway 000
Outlir	ne				

- 2 Stochastic Bandits
- 3 Uniform Exploration
- Upper Confidence Bound
- 5 MDP and UCBVI

6 Takeaway

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
•0	0000000	0000000	0000000	00000	000

Overview

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway				
00									

- Sequential decision making problems typically involve an exploration-exploitation trade-off.
- The upper confidence bound technique:
 - Compute an empirical estimate of some desired quantity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Add an "exploration term" to the empirical estimate.
- Section 2 Sec

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	000000	0000000	0000000	00000	000

Stochastic Bandits

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI	Takeaway
00	000000	00000000		00000	000
Setup					

- There is a known time horizon T.
- The learner has access to a set of K arms, denoted by A.

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
OO	000000	00000000		00000	000
Setup					

- There is a known time horizon T.
- The learner has access to a set of K arms, denoted by A.
- For each arm a:
 - Let \mathcal{D}_a be its reward distribution with support in [0, 1].

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• Let $\mu(a) = \mathbb{E}[\mathcal{D}_a]$ be its mean reward.

Overview 00	Stochastic Bandits 000000	Uniform Exploration 00000000	Upper Confidence Bound 00000000	MDP and UCBVI 00000	Takeaway 000
Setun					

- There is a known time horizon T.
- The learner has access to a set of K arms, denoted by A.
- For each arm a:
 - Let \mathcal{D}_a be its reward distribution with support in [0, 1].

- Let $\mu(a) = \mathbb{E}[\mathcal{D}_a]$ be its mean reward.
- Let $\mu^* = \max_{a \in A} \mu(a)$ denote the **best mean reward**.
- Let $a^* \in \arg \max_{a \in A} \mu(a)$ denote any **optimal arm**.

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI	Takeaway
00	○●○○○○○	00000000		00000	000
Setup					

- There is a known time horizon T.
- The learner has access to a set of K arms, denoted by A.
- For each arm a:
 - Let \mathcal{D}_a be its reward distribution with support in [0, 1].
 - Let $\mu(a) = \mathbb{E}[\mathcal{D}_a]$ be its mean reward.
- Let $\mu^* = \max_{a \in A} \mu(a)$ denote the **best mean reward**.
- Let $a^* \in \arg \max_{a \in A} \mu(a)$ denote any **optimal arm**.
- The learner does not know the true reward distributions.

Overview 00	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI 00000	Takeaway 000
Probl	em Protoco				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In each round $t \in [T]$,

- The learner chooses an arm $a_t \in A$.
- It earns a reward $r_t \sim \mathcal{D}_{a_t}$.

Overview Stochastic Bandits 00 0000000	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI 00000	Takeaway 000
Fxamples				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Slot Machines
- Medical Trials
- Dynamic Pricing
- Dynamic Procurement
- • •

Overview OO	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI 00000	Takeaway 000
Goal					

- The learner's goal is to maximize $\mathbb{E}\left[\sum_{t=1}^{T} r_t\right]$.
- If the learner knew the true reward distributions, this would be easy.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	0000000	00000	000
Cool					

- The learner's goal is to maximize $\mathbb{E}\left[\sum_{t=1}^{T} r_t\right]$.
- If the learner knew the true reward distributions, this would be easy.
 - Simply choose *a*^{*} in every round.
- But the learner does *not* know *a**.
 - This leads to the fundamental exploration-exploitation trade-off.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• So, we will measure a learner's performance in terms of its regret.

Overview 00	Stochastic Bandits 00000●0	Uniform Exploration	Upper Confidence Bound 0000000	MDP and UCBVI 00000	Takeaway 000
Regret					

- **Regret** measures how well a learner performs compared to the best benchmark, which in this case is the best fixed arm.
- The cumulative regret after T rounds is defined as

$$R(T) = \mu^* \cdot T - \sum_{t=1}^{T} \mu(a_t).$$
 (1)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Overview 00	Stochastic Bandits 00000●0	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI 00000	Takeaway 000
Regret	t				

- **Regret** measures how well a learner performs compared to the best benchmark, which in this case is the best fixed arm.
- The cumulative regret after T rounds is defined as

$$R(T) = \mu^* \cdot T - \sum_{t=1}^{T} \mu(a_t).$$
 (1)

• Note that R(T) is a random variable because it depends on the randomness in the rewards and the learner.

• Therefore, we will usually analyze the **expected regret** $\mathbb{E}[R(T)]$.

• The goal of a learner is to choose actions that minimize regret.

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
	000000				

Exploration-Exploitation Trade-Off

A key feature of a multi-armed bandit problem is the trade-off between

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Exploration: Find out more information about each arm.
- Exploitation: Choose the best arm so far.

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	0000000	00000	000

Uniform Exploration

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Overview 00	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI 00000	Takeaway 000
Idea					

- If we knew the true means, then we'd simply choose a^* .
- Why don't we do the following?
 - Compute an empirical estimate of the true means.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Choose an arm with the highest empirical mean.

	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	0000000	00000	000

Uniform Exploration Algorithm

Algorithm 1: Uniform Exploration

- 1 Choose each arm N times
- 2 For arm $a \in A$, let $\overline{\mu}(a)$ be its empirical mean
- 3 Let $\hat{a} \in \operatorname{arg\,max}_{a \in A} \bar{\mu}(a)$
- 4 Play arm \hat{a} in all remaining rounds.

This algorithm explicitly **explores** in the first KN rounds and then **exploits** in the remaining T - KN rounds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI	Takeaway
OO	0000000	000●0000		00000	000
Analy	sis - Clean	Fvent			

• Let the **confidence radius** be
$$r(a) = \sqrt{\frac{2 \log T}{N}}$$
.

• Using Hoeffding's inequality,

-

$$\Pr[|\bar{\mu}(a) - \mu(a)| \le r(a)] \ge 1 - \frac{2}{T^4}.$$
 (2)

• Using the union bound,

$$\Pr[\forall a \in A, |\bar{\mu}(a) - \mu(a)| \le r(a)] \ge 1 - \frac{2}{T^3}.$$
 (3)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI	Takeaway
OO	0000000	000●0000		00000	000
Analy	sis - Clean	Fvent			

- Let the confidence radius be $r(a) = \sqrt{\frac{2 \log T}{N}}$.
- Using Hoeffding's inequality,

$$\Pr[|\bar{\mu}(a) - \mu(a)| \le r(a)] \ge 1 - \frac{2}{T^4}.$$
 (2)

Using the union bound,

$$\Pr[\forall a \in A, |\bar{\mu}(a) - \mu(a)| \le r(a)] \ge 1 - \frac{2}{T^3}.$$
 (3)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

- Define the above to be the clean event.
 - ${\, \bullet \,}$ The clean event says that all empirical estimates \approx true means.

Overview 00	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI 00000	Takeaway 000
Analy	sis - Regret				

- Condition on the clean event.
- In the first KN rounds, the regret is at most 1 in each round.
- In the remaining T KN rounds, the regret is $\Delta(\hat{a}) = \mu(a^*) \mu(\hat{a})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
		00000000			
Analy	icic - Rearet				
Anary	JJJ - INCEICL				

- Condition on the clean event.
- In the first KN rounds, the regret is at most 1 in each round.
- In the remaining T KN rounds, the regret is $\Delta(\hat{a}) = \mu(a^*) \mu(\hat{a})$.
- In order to bound $\Delta(\hat{a})$, observe that

$$\mu(a^*) - r(a^*) \le \bar{\mu}(a^*) \le \bar{\mu}(\hat{a}) \le \mu(\hat{a}) + r(\hat{a}).$$
(4)

Therefore,

$$\Delta(\hat{a}) \le O\left(\sqrt{\frac{\log T}{N}}\right).$$
(5)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI	Takeaway
00	0000000	00000€00		00000	000
Analy	sis - Regret				

• So, we have

$$R(T) \le KN + O\left(\sqrt{\frac{\log T}{N}}\right) \cdot (T - KN)$$

$$\le KN + O\left(\sqrt{\frac{\log T}{N}}\right) \cdot T.$$
(6)
(7)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Overview 00	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound 00000000	MDP and UCBVI 00000	Takeaway 000
Analys	sis - Regret				

• So, we have

$$R(T) \le KN + O\left(\sqrt{\frac{\log T}{N}}\right) \cdot (T - KN)$$

$$\le KN + O\left(\sqrt{\frac{\log T}{N}}\right) \cdot T.$$
(6)
(7)

• If we choose $N = (T/K)^{2/3} O(\log T)^{1/3}$, then

$$R(T) \le O\left((K \log T)^{1/3} T^{2/3} \right).$$
(8)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
		00000000			
A 1	· • •				
Analy	'sis - Regret				

Now, we can bound the expected regret as follows:

$$\mathbb{E}[R(T)] = \Pr[\text{clean event}]\mathbb{E}[R(T) \mid \text{clean event}]$$
(9)
+ $\Pr[\text{dirty event}]\mathbb{E}[R(T) \mid \text{dirty event}]$ (10)
$$\leq 1 \cdot O\left((K \log T)^{1/3} T^{2/3}\right) + \frac{2}{T^3} \cdot T$$
(11)

$$\leq O\left((K\log T)^{1/3}T^{2/3}\right).$$
 (12)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000●		00000	000
Discu	ssion				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pros:

- The algorithm is extremely simple.
- It provides a non-trivial regret bound.

Cons:

Overview OO	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI 00000	Takeaway 000
Discu	ssion				

Pros:

- The algorithm is extremely simple.
- It provides a non-trivial regret bound.

Cons:

- Suboptimal.
- The performance in the exploration phase is terrible.

• Does not explore adaptively.

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	•0000000	00000	000

Upper Confidence Bound

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	0000000	00000	000

Idea

- It's good to choose an arm if
 - it has not been chosen enough number of times yet,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- or its empirical mean so far is high.
- Do not waste rounds exploring arms that
 - have already been chosen many times,
 - and have a low empirical mean.

Modi	fied Clean F	vent			
00	000000	0000000	0000000	00000	000
Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway

• Let the **confidence radius in round** *t* be

$$r_t(a) = \sqrt{\frac{2\log T}{n_t(a)}},\tag{13}$$

where $n_t(a)$ is the number of times arm *a* has been chosen in the first *t* rounds.

Modi	fied Clean F	vent			
00	000000	0000000	0000000	00000	000
Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway

• Let the **confidence radius in round** *t* be

$$r_t(a) = \sqrt{\frac{2\log T}{n_t(a)}},\tag{13}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

where $n_t(a)$ is the number of times arm *a* has been chosen in the first *t* rounds.

- Let $\bar{\mu}_t(a)$ denote the **empirical estimate of arm** *a* **in round** *t*.
- Then,

$$\Pr[\forall a \in A, t \in [T], |\bar{\mu}_t(a) - \mu(a)| \le r_t(a)] \ge 1 - \frac{2}{T^2}.$$
(14)

• Define the above to be the clean event.

Overview 00	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI 00000	Takeaway 000
Confi	dence Boun	ds			

• Define the upper and lower confidence bounds in round t as

$$UCB_t(a) = \bar{\mu}_t(a) + r_t(a), \qquad (15)$$

$$LCB_t(a) = \bar{\mu}_t(a) - r_t(a).$$
(16)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

• Define the confidence interval in round t as $[LCB_t(a), UCB_t(a)]$.

UOD1	A large with the sec		
UCR1	Algorithm		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Algorithm 2: UCB1

- 1 Try each arm once
- 2 In each round t, choose $a_t \in \arg \max_{a \in A} \mathrm{UCB}_t(a)$

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
OO	0000000	00000000		00000	000
UCB1	l Algorithm				

Algorithm 3: UCB1

- 1 Try each arm once
- 2 In each round t, choose $a_t \in \arg \max_{a \in A} \operatorname{UCB}_t(a)$

Note that the selection rule naturally incorporates exploration and exploitation because

$$UCB_t(a) = \bar{\mu}_t(a) + O\left(\sqrt{\frac{2\log T}{n_t(a)}}\right).$$
(17)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Analy	sis - Regret				
00	0000000	00000000	00000000	00000	000
Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway

• Condition on the clean event. Then,

$$\bar{\mu}_t(a_t) \le \mu(a_t) + r_t(a_t). \tag{18}$$

• By the algorithm's selection rule,

$$UCB_t(a^*) \le UCB_t(a_t). \tag{19}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	00000000	00000	000
A 1	· • •				
Analy	sis - Regret				

• Condition on the clean event. Then,

$$\bar{\mu}_t(a_t) \le \mu(a_t) + r_t(a_t). \tag{18}$$

• By the algorithm's selection rule,

$$\operatorname{UCB}_t(a^*) \leq \operatorname{UCB}_t(a_t).$$
 (19)

• Combining the above shows that

$$\mu(\boldsymbol{a}^*) \le \mathrm{UCB}_t(\boldsymbol{a}^*) \tag{20}$$

$$\leq \mathrm{UCB}_t(a_t)$$
 (21)

$$=\bar{\mu}_t(a_t)+r_t(a_t) \tag{22}$$

$$\leq \mu(a_t) + 2r_t(a_t). \tag{23}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	00000000		00000	000
Analy	sis - Regret				

Therefore,

$\Delta(a_t) = O(r_t(a_t)) = O\left(\sqrt{\frac{2\log T}{n_t(a)}}\right).$ (18)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

00	0000000	0000000	00000000	00000	000
Analy	sis - Regret				

• Therefore,

$$\Delta(a_t) = O(r_t(a_t)) = O\left(\sqrt{\frac{2\log T}{n_t(a)}}\right).$$
(18)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Consider any arm $a \in A$.
- Let t be the last round when a is played. Then, $n_t(a) = n_T(a)$.

Overview 00	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI 00000	Takeaway 000
Analys	sis - Regret				

• Therefore,

$$\Delta(a_t) = O(r_t(a_t)) = O\left(\sqrt{\frac{2\log T}{n_t(a)}}\right).$$
(18)

- Consider any arm $a \in A$.
- Let t be the last round when a is played. Then, $n_t(a) = n_T(a)$.
- Therefore,

$$\Delta(a) \leq O(r_t(a)) = O(r_T(a)) = O\left(\sqrt{\frac{2\log T}{n_T(a)}}\right).$$
(19)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• This shows that if an arm is played many times, then its gap will be small. This is precisely what allows us to bound the regret.

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	00000000	00000	000
Analy	sis - Regret				
- maiy					

- Let R(t, a) = Δ(a)n_t(a) denote the regret of arm a in the first t rounds.
- Then, we can write the cumulative regret as

$$R(t) = \sum_{a \in A} O\left(\sqrt{\frac{\log T}{n_t(a)}} n_t(a)\right) = O\left(\sqrt{\log T}\right) \sum_{a \in A} \sqrt{n_t(a)}.$$
 (20)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	0000000	00000	000
Analysi	s - Regret				

- Let R(t, a) = Δ(a)n_t(a) denote the regret of arm a in the first t rounds.
- Then, we can write the cumulative regret as

$$R(t) = \sum_{a \in A} O\left(\sqrt{\frac{\log T}{n_t(a)}} n_t(a)\right) = O\left(\sqrt{\log T}\right) \sum_{a \in A} \sqrt{n_t(a)}.$$
 (20)

• Since square root is a concave function and $\sum_{a \in A} n_t(a) = t$,

$$R(t) = O\left(\sqrt{Kt\log T}\right).$$
(21)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview 00	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI 00000	Takeaway 000
Analy	aia Dograt				

- Let R(t, a) = Δ(a)n_t(a) denote the regret of arm a in the first t rounds.
- Then, we can write the cumulative regret as

$$R(t) = \sum_{a \in A} O\left(\sqrt{\frac{\log T}{n_t(a)}} n_t(a)\right) = O\left(\sqrt{\log T}\right) \sum_{a \in A} \sqrt{n_t(a)}.$$
 (20)

• Since square root is a concave function and $\sum_{a \in A} n_t(a) = t$,

$$R(t) = O\left(\sqrt{Kt\log T}\right). \tag{21}$$

 We can bound the expected regret as before and we have that for all rounds t ∈ [T],

$$\mathbb{E}[R(t)] = O\left(\sqrt{Kt\log T}\right). \tag{22}$$

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
OO	0000000		0000000●	00000	000
Discu	ssion				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pros:

- Regret bound is **optimal**.
- The UCB trick is widely applicable.

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
				•0000	

MDP and UCBVI

(Quick Overview)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

00 00	Stochastic Bandits	Oniform Exploration	Opper Confidence Bound	Takeaway OOO
Marko	ov Decision	Processes		

A Markov decision process (MDP) M is a tuple (S, A, P, r, T, μ) , where

- S is a set of states,
- A is a set of actions,
- $P: S \times A \rightarrow \Delta(S)$ is a set of transition probabilities,
- $R: S \times A \rightarrow [0, 1]$ is a reward function,
- $T \in \mathbb{N}$ is the **time horizon**,
- $\mu \in \Delta(S)$ is an initial state distribution.

A stationary, randomized **policy** $\pi : S \to \Delta(A)$ is a mapping from states to distribution over actions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Maulia	Desision	Due exercic			
Overview OO	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI 0●000	Takeaway 000

The dynamics of an MDP are as follows:

- Sample an initial state $s_0 \sim \mu$.
- In each round t = 0, 1, ..., T 1:
 - **()** Choose an action $a_t \sim \pi(\cdot|s_t)$
 - **2** Observe reward $r_t = R(s_t, a_t)$
 - **③** Transition to the next state $s_{t+1} \sim P(\cdot|s_t, a_t)$

The goal of a learner is to learn a policy that maximizes $\mathbb{E}\left[\sum_{t=0}^{T-1} r_t\right]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overview 00	Stochastic Bandits 0000000	Uniform Exploration 00000000	Upper Confidence Bound 00000000	MDP and UCBVI 00000	Takeaway 000
MDP	- Planning				

If the MDP is **known**, i.e., the learner knows P and r, then the problem is "easy" to solve using dynamic programming.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview OO	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI 00000	Takeaway 000
MDP	- Planning				

If the MDP is **known**, i.e., the learner knows P and r, then the problem is "easy" to solve using dynamic programming.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What if the MDP is unknown?

00	0000000	0000000	0000000	00000	000		
MDP - Learning							

- For simplicity, assume that the reward is known, but the **transition probabilities** are **unknown**.
- In each episode $n \in [N]$,
 - The learner chooses some policy π^n .
 - This policy is executed on $s_0^n \sim \mu$ for T rounds.
- The goal is to minimize the **regret** between the values of the optimal policy and the sequence of policies executed by the learner:

$$\mathbb{E}\left[\text{regret}\right] = \mathbb{E}\left[\sum_{n=1}^{N} V^* - V^{\pi^n}\right].$$
(23)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	o				
00	0000000	0000000	0000000	00000	000
Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway

Upper Confidence Bound Value Iteration (UCBVI)

- Think about value iteration (VI) as a black box that accepts an MDP as input and outputs the optimal policy for this MDP.
- The MDP is specified by its transition probabilities and reward function.

	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	0000000	00000	000

Upper Confidence Bound Value Iteration (UCBVI)

Algorithm 4: UCBVI

- 1 for n = 1, 2, ..., N do 2 Let $N_t^n(s, a)$ be the number of times we saw the state-action pair (s, a) in round t in the first n - 1 episodes
- 3 Let $N_t^n(s, a, s')$ be the number of times we saw the state-action pair (s, a) in round t in the first n - 1 episodes and transitioned to state s'
- 4 For all s, a, s', t, estimate the transition probabilities as

$$\hat{P}_{t}^{n}(s'|s,a) = \frac{N_{t}^{n}(s,a,s')}{N_{t}^{n}(s,a)}.$$
(24)

5 Compute
$$\pi^n = \operatorname{VI}\left(\{\hat{P}_t^n, r_t + \boldsymbol{b}_t^n\}_{t=1}^{T-1}\right)$$

6 Execute π^n

7 end

	• • • •	-			
00	0000000	0000000	0000000	00000	000
Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway

Upper Confidence Bound Value Iteration (UCBVI)

• The b_t^n terms are defined as

$$b_t^n(s,a) = O\left(T\sqrt{\frac{\ln(SATN/\delta)}{N_t^n(s,a)}}\right).$$
 (24)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 As before, this term allows us to trade-off between exploration and exploitation.

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	000000	0000000	0000000	00000	000

Takeaway

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Overview 00	Stochastic Bandits 0000000	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI 00000	Takeaway O●O
Takea	WaW				

- Sequential decision making problems typically involve an exploration-exploitation trade-off.
- The upper confidence bound technique:
 - Ompute an empirical estimate of some desired quantity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Add an "exploration term" to the empirical estimate.
- Section 2 Sec

Overview	Stochastic Bandits	Uniform Exploration	Upper Confidence Bound	MDP and UCBVI	Takeaway
00	0000000	0000000	0000000	00000	000

The End

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで